精英家教网 > 高中数学 > 题目详情

【题目】已知圆,动圆过定点且与圆相切,圆心的轨迹为曲线.

1)求的方程;

2)设斜率为1的直线两点,交轴于点,轴交两点,若,求实数的值.

【答案】12

【解析】

1)根据圆与圆的位置关系得出圆与圆相内切,曲线是以点为焦点的椭圆,继而求得轨迹方程;

2)设,则联立得.根据根与系数的关系和两点的距离公式可得出,由根的判别式得出的范围,可得出实数的值.

1)圆的圆心为,半径为,点在圆内,故圆与圆相内切.

设圆的半径为,则,从而.

因为,所以曲线是以点为焦点的椭圆.

,得,故的方程为.

2)设,则

.

联立得.

时,即时,.

所以.

由(1)得所以.

等式可化为.

时,.

时,可以取任意实数.

综上,实数的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线y2=6x焦点的弦长为12,则该弦所在直线的倾斜角是(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,若曲线与曲线关于直线对称.

1)求曲线的直角坐标方程;

2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左焦点为,点在椭圆.

1)求椭圆的方程;

2)已知圆,连接并延长交圆于点为椭圆长轴上一点(异于左、右焦点),过点作椭圆长轴的垂线分别交椭圆和圆于点均在轴上方).连接,记的斜率为的斜率为.

①求的值;

②求证:直线的交点在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商家统计了去年两种产品的月销售额(单位:万元),绘制了月销售额的雷达图,图中点表示产品2月份销售额约为20万元,点表示产品9月份销售额约为25万元.

根据图中信息,下面统计结论错误的是(

A.产品的销售额极差较大B.产品销售额的中位数较大

C.产品的销售额平均值较大D.产品的销售额波动较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三点在椭圆.

1)求的方程;

2)设的短轴端点分别为,直线两点,交轴于点,若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某区“创文明城区”简称“创城”活动中,教委对本区ABCD四所高中校按各校人数分层抽样调查,将调查情况进行整理后制成如表:

学校

A

B

C

D

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值

假设每名高中学生是否参与“创城”活动是相互独立的.

若该区共2000名高中学生,估计A学校参与“创城”活动的人数;

在随机抽查的100名高中学生中,从AC两学校抽出的高中学生中各随机抽取1名学生,求恰有1人参与“创城”活动的概率;

若将表中的参与率视为概率,从A学校高中学生中随机抽取3人,求这3人参与“创城”活动人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取个,并按分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.

1)写出频率分布直方图甲中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)

2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于箱且另一个不高于箱的概率;

3)设表示在未来天内甲种酸奶的日销售量不高于箱的天数,以日留住量落入各组的频率为概率,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.

(1)求椭圆C的标准方程;

(2)设动直线l交椭圆CPQ两点,直线OPOQ的斜率分别为kk.,求证OPQ的面积为定值,并求此定值.

查看答案和解析>>

同步练习册答案