精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为且椭圆上一点到其两焦点的距离之和为

1求椭圆的标准方程

2设直线与椭圆交于不同两点若点满足的值

【答案】12的值为

【解析】

试题分析:1由椭圆的定义求出,,再求出的值,得出椭圆的标准方程2联立直线,椭圆方程,由韦达定理求出两根之和,两根之积,由弦长公式求出的值,再由中垂线性质,中点坐标求出的值

试题解析:1由已知

椭圆的方程为

2

直线与椭圆交于不同两点

又由解得

据题意知,点为线段的中垂心与直线的交点

的中点为

此时,线段的中垂线方程为

此时,线段中垂线方程为

综上所述,的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】水是万物之本、生命之源,节约用水,从我做起.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如下表):

(1)试根据频率分布直方图估计这60人的平均月收入;

(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数为偶函数,且在区间上是单调递增函数。

求函数的解析式;

)设能取遍内的所有实数,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远。其中有一题:今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何? 译文如下:要测量海岛上一座山峰的高度,立两根高均为丈的标杆,前后标杆相距步,使后标杆杆脚与前标杆杆脚与山峰脚在同一直线上,从前标杆杆脚退行步到,人眼著地观测到岛峰,三点共线,从后标杆杆脚退行步到,人眼著地观测到岛峰,三点也共线,问岛峰的高度 步. (古制:=尺,===步)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时抛掷甲、乙两颗骰子.

(1)求事件A“甲的点数大于乙的点数”的概率;

(2)若以抛掷甲、乙两颗骰子点数m,n作为点P的坐标(m,n),求事件B“P落在圆内”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为短轴顶点在圆上.

(Ⅰ)求椭圆方程;

(Ⅱ)已知点,若斜率为1的直线与椭圆相交于两点,试探究以为底边的等腰三角形是否存在?若存在,求出直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为加强学生的交通安全教育,对学校旁边两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且路口数据的平均数比路口数据的平均数小2.

(1)求出路口8个数据中的中位数和茎叶图中的值;

(2)在路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;

(2) 已知函数f(x)=x2+2mx+3m+4.

① 若函数f(x)有且仅有一个零点,求实数m的值;

若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.

查看答案和解析>>

同步练习册答案