精英家教网 > 高中数学 > 题目详情
(2012•商丘三模)若向量
a
=(1,2),
b
=(-1,1),且k
a
+
b
a
-
b
共线,则实数k=
-1
-1
分析:根据题意,由
a
b
的坐标可得k
a
+
b
a
-
b
的坐标,由向量平行的判断公式可得2(2k+1)=(k-1),解可得答案.
解答:解:根据题意,
a
=(1,2),
b
=(-1,1),
k
a
+
b
=(k-1,2k+1),
a
-
b
=(2,1),
若(k
a
+
b
)∥(
a
-
b
),则必有2(2k+1)=(k-1),
解可得,k=-1,
故答案为-1.
点评:本题考查向量平行的坐标判定方法,要牢记向量平行的判断公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•商丘三模)已知等比数列{an}的前n项和Sn=2n+m(m∈R).
(Ⅰ)求m的值及{an}的通项公式;
(Ⅱ)设bn=2log2an-13,数列{bn}的前n项和为Tn,求使Tn最小时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知实数x,y满足
x-y≤1
x≥
1
2
2x+y≤4
,则x-3y的最大值为
2
2

查看答案和解析>>

同步练习册答案