精英家教网 > 高中数学 > 题目详情

【题目】如图,直角梯形ABCD中,ABCD,∠BAD90°ABAD1CD2,若将△BCD沿着BD折起至△BC'D,使得ADBC'

1)求证:平面C'BD⊥平面ABD

2)求C'D与平面ABC'所成角的正弦值;

3MBD中点,求二面角MAC'B的余弦值.

【答案】1)见解析(2;(3

【解析】

1)先证明,再利用面面垂直的判定即可得证;

2)先证明,再求即可得解;

3)建立空间坐标系,分别求出两面的法向量即可得解.

1)过点的垂线交于点,得,∴

,∴,∴,∴

,且平面

平面,又平面,∴平面⊥平面

2)由(1平面,可知:平面⊥平面

,平面平面

,∴与平面所成角为

由(1平面可知:,∴,∴

,即与平面所成角的正弦值为

3)以为原点,所在直线分别为轴、轴建立如图所示的空间直角坐标系,由(1可知,

的中点,∴

∴平面的一个法向量

平面的一个法向量

由图可知二面角的大小为锐角,

∴二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次函数fx)=ax22bx+8

1)设集合P{123}Q{2345},分别从集合PQ中随机取一个数作为ab,求函数yfx)在区间(﹣2]上有零点且为减函数的概率?

2)设集合P[13]Q[25],分别从集合PQ中随机取一个实数作为ab,求函数yfx)在区间(﹣2]上有零点且为减函数的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0),椭圆C上的点到焦点距离的最大值为9,最小值为1

1)求椭圆C的标准方程;

2)求椭圆C上的点到直线l4x5y+400的最小距离?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.下图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按分组,得到的频率分布直方图.

1)请计算高一年级和高二年级成绩小于60分的人数;

2)完成下面列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?

成绩小于60分人数

成绩不小于60分人数

合计

高一

高二

合计

附:临界值表及参考公式:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,边所在直线的方程分别为.

1)求边上的高所在的直线方程;

2)若圆过直线上一点及点,当圆面积最小时,求其标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,过焦点且垂直于x轴的直线被椭圆截得的线段长为3

(1)求椭圆的方程;

(2)已知P为直角坐标平面内一定点,动直线l:与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:

x

2

3

4

5

Y

18

27

32

35

1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.

参考公式:用最小二乘法求线性回归方程的系数公式:

参考数据:2×18+3×27+4×32+5×35=420

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,长轴长为4,离心率为.过右焦点的直线交椭圆两点(均不与重合),记直线的斜率分别为.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在常数,当直线变动时,总有成立?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形都是直角梯形,,,的中点。

(1)求证:

(2)已知的中点,求证:

(3)求直线与平面所成角的大小。

查看答案和解析>>

同步练习册答案