精英家教网 > 高中数学 > 题目详情
当m为何值时,方程x2-4|x|+5=m,(1)无解;(2)有两个实数解;(3)有三个实数解;(4)有四个实数解。
解:设y1=x2-4|x|+5,y2=m,则该方程解的个数问题即可转化为
两个函数图象的交点个数问题来处理,
设y1=x2-4|x|+5,则y1=
画出函数的图象,如右图所示,
再画出函数y2=m的图象,由图象可以看出:
(1)当m<1时,两个函数图象没有交点,故原方程无解;
(2)当m=1或m>5时,两个函数图象有两个交点,故原方程有两个解;
(3)当m=5时,两个函数图象有三个交点,故原方程有三个解;
(4)当1<m<5时,两个函数图象有四个交点,故原方程有四个解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x,y的方程C:x2+y2-2x-4y+m=0.
(1)当m为何值时,方程C表示圆.
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且MN=
4
5
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x,y的方程C:x2+y2-2x-4y+m=0.
(1)当m为何值时,方程C表示圆.
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=
4
5
,求m的值.
(3)在(2)条件下,是否存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为
1
5
,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x,y的方程C:x2+y2-2x-4y+m=0.
(1)当m为何值时,方程C表示圆.
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=
4
5
5
,求m的值.
(3)在(2)条件下,是否存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为
5
5
,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011年天津市青光中学高二上学期期中考试数学试卷 题型:解答题

((8分)已知关于x,y的方程C:.
(1)当m为何值时,方程C表示圆。
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且MN=,求m的值。

查看答案和解析>>

科目:高中数学 来源:2010年山东省高一下学期期末考试数学卷 题型:解答题

(本题满分14分) 

    已知关于x,y的方程C:.

(1)当m为何值时,方程C表示圆。

(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且MN=,求m的值。

 

查看答案和解析>>

同步练习册答案