精英家教网 > 高中数学 > 题目详情

【题目】各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn= ,求数列{bn}的前n项和T.

【答案】
(1)解:∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan﹣p

∴2a1=2pa12+pa1﹣p,即2=2p+p﹣p,解得p=1


(2)解:2Sn=2an2+an﹣1,①

2Sn1=2an12+an1﹣1,(n≥2),②

①﹣②即得(an﹣an1 )(an+an1)=0,

因为an+an1≠0,所以an﹣an1 =0,


(3)解:2Sn=2an2+an﹣1=2×

∴Sn=

=n2n

Tn=1×21+2×22+…+n2n

又2Tn=1×22+2×23+…+(n﹣1)2n+n2n+1

④﹣③Tn=﹣1×21﹣(22+23+…+2n)+n2n+1=(n﹣1)2n+1+2

∴Tn=(n﹣1)2n+1+2


【解析】(1)根据a1=1,对任意的n∈N*,有2Sn=2pan2+pan﹣p,令n=1,解方程即可求得结果;(2)由2Sn=2an2+an﹣1,知2Sn1=2an12+an1﹣1,(n≥2),所以(an﹣an1﹣1)(an+an1)=0,由此能求出数列{an}的通项公式.(3)根据 求出数列{bn}的通项公式,利用错位相减法即可求得结果.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(1﹣k)x﹣k恰有一个零点在区间(2,3)内,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).

(1)求图中的值;

(2)估计该次考试的平均分(同一组中的数据用该组的区间中点值代表);

(3)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(参考公式: ,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x2y2=1上任意一点P,过点P作两直线分别交圆于AB两点,且∠APB=60°,则|PA|2+|PB|2的取值范围为___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 (t为参数), ( 为参数).
(1)化 的方程为普通方程,并说明它们分别表示什么曲线;
(2)过曲线 的左顶点且倾斜角为 的直线 交曲线 两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表:

总计

读营养说明

16

8

24

不读营养说明

4

12

16

总计

20

20

40

(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?

(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数的分布列及其均值(即数学期望).

(注: ,其中为样本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为 ,直线l与曲线C的交点为A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点的离心率为的等比中项.

(1)求曲线的方程;

(2)倾斜角为的直线过原点且与交于两点,倾斜角为的直线过且与交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且当x<0时,
(1)求f(x)的表达式;
(2)判断并证明函数f(x)在区间(0,+∞)上的单调性.

查看答案和解析>>

同步练习册答案