精英家教网 > 高中数学 > 题目详情

(本小题12分)已知满足.

(1)将表示为的函数,并求的单调递增区间;

(2)已知三个内角的对边分别为,若,且,求面积的最大值.

 

【答案】

(1)即为的单调递增区间.

(2)面积的最大值为 

【解析】(1)根据数量积的坐标表示建立关于x,y的等式关系,再借助两角和与差的正余弦公式化简可得f(x)的表达式。

(2)先求,确定出角A的大小,再根据a=2,利用余弦定理可知

,从而求出bc的最大值,进而得到面积的最大值。

解:(1)

所以,………………………3分

,得即为的单调递增区间. ………………6分

(2)

                                    ………………………………8分

中由余弦定理有,

可知(当且仅当时取等号),

面积的最大值为               ………………………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题12分)已知,直线与函数的k*s#5^u图象都相切,且与函数的k*s#5^u图象的k*s#5^u切点的k*s#5^u横坐标为.

(Ⅰ)求直线的k*s#5^u方程及的k*s#5^u值;

(Ⅱ)若(其中的k*s#5^u导函数),求函数的k*s#5^u最大值;

(Ⅲ)当时,求证:.

查看答案和解析>>

科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题12分)已知等比数列中,
(1)求数列的通项公式;
(2)设等差数列中,,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2011云南省潞西市高二上学期期末考试数学试卷 题型:解答题

(本小题12分)

已知顶点在原点,焦点在轴上的抛物线与直线交于P、Q两点,|PQ|=,求抛物线的方程

 

查看答案和解析>>

科目:高中数学 来源:2010年浙江省杭州市七校高二上学期期中考试数学文卷 题型:解答题

(本小题12分)

已知圆C:

(1)若直线且与圆C相切,求直线的方程.

(2)是否存在斜率为1直线,使直线被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求

    出直线的方程;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省兖州市高二下学期期末考试数学(文) 题型:解答题

(本小题12分)已知函数

(1)       求这个函数的导数;

(2)       求这个函数的图像在点处的切线方程。

 

查看答案和解析>>

同步练习册答案