精英家教网 > 高中数学 > 题目详情

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

【答案】B

【解析】

根据统计图表逐个选项进行验证即可.

由参保人数比例图可知,54周岁以上参保人数最少,30周岁以上的人群约占参保人群的80%,所以选项A,选项D均正确;

由参保险种比例图可知,丁险种更受参保人青睐,所以选项C正确;

由不同年龄段人均参保费用图可知,1829周岁人群人均参保费用最少,但是这类人所占比例为20%,所以总费用不一定最少.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,上、下顶点分别是,上、下焦点分别是,焦距为,点在椭圆上.

1)求椭圆的方程;

2)若为椭圆上异于的动点,过作与轴平行的直线,直线交于点,直线与直线交于点,判断是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数有两个不同的零点

I)证明:

(Ⅱ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)

(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数近似为样本方差

(ⅰ)利用该正态分布,求

(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求

附:.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是直角梯形,点,以为折痕将折起,使点到达的位置,且,如图2.

1)证明:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从中国教育在线官方公布的考研动机调查来看,本科生扎堆考研的原因大概集中在这6个方面:本科就业压力大,提升竞争力;通过考研选择真正感兴趣的专业;为了获得学历;继续深造;随大流;有名校情结.如图是20152019年全国硕士研究生报考人数趋势图(单位:万人)的拆线图.

1)求关于的线性回归方程;

2)根据(1)中的回归方程,预测2021年全国硕士研究生报考人数.

参考数据:

回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足(O为坐标原点),记点P的轨迹为C.

(1)求曲线C的方程;

(2)已知定点M(,0),N(,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明下班回家途经3个有红绿灯的路口,交通法规定:若在路口遇到红灯,需停车等待;若在路口没遇到红灯,则直接通过.经长期观察发现:他在第一个路口遇到红灯的概率为,在第二、第三个道口遇到红灯的概率依次减小,在三个道口都没遇到红灯的概率为,在三个道口都遇到红灯的概率为,且他在各路口是否遇到红灯相互独立.

1)求小明下班回家途中至少有一个道口遇到红灯的概率;

2)求小明下班回家途中在第三个道口首次遇到红灯的概率;

3)记为小明下班回家途中遇到红灯的路口个数,求数学期望.

查看答案和解析>>

同步练习册答案