【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(1)判断△ABC的形状;
(2)求sin(2A+ )﹣2cos2B的取值范围.
【答案】
(1)解:由acosB=bcosA,结合正弦定理可得,sinAcosB=cosAsinB,
即sinAcosB﹣cosAsinB=0,得sin(A﹣B)=0,
∵A,B∈(0,π),
∴A﹣B∈(﹣π,π),则A﹣B=0,
∴A=B,即△ABC为等腰三角形
(2)解:sin(2A+ )﹣2cos2B=sin2Acos +cos2Asin ﹣2cos2B
= ﹣(1+cos2B)= ﹣cos2A﹣1
= = .
∵0 ,∴ ,
则 .
即sin(2A+ )﹣2cos2B的取值范围是
【解析】(1)由已知等式结合正弦定理化边为角,再由两角差的余弦求得sin(A﹣B)=0,可得A=B,则△ABC为等腰三角形;(2)把sin(2A+ )﹣2cos2B利用两角和的正弦及降幂公式化简,得到关于A的三角函数,再由A的范围求得答案.
科目:高中数学 来源: 题型:
【题目】如图,由半圆x2+y2=r2(y≤0,r>0)和部分抛物线y=a(x2﹣1)(y≥0,a>0)合成的曲线C称为“羽毛球形线”,曲线C与x轴有A、B两个焦点,且经过点(2.3).
(1)求a、r的值;
(2)设N(0,2),M为曲线C上的动点,求|MN|的最小值;
(3)过A且斜率为k的直线l与“羽毛球形线”相交于P,A,Q三点,问是否存在实数k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b∈R,函数 ,g(x)=ex(e为自然对数的底数),且函数f(x)的图象与函数g(x)的图象在x=0处有公共的切线.
(Ⅰ)求b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若g(x)>f(x)在区间(﹣∞,0)内恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin2x+cos2( ﹣x)﹣ (x∈R).
(1)求函数f(x)在区间[0, ]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)= ,求 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com