精英家教网 > 高中数学 > 题目详情

【题目】近几年,由于环境的污染,雾霾越来越严重,某环保公司销售一种PM2.5颗粒物防护口罩深受市民欢迎.已知这种口罩的进价为40元,经销过程中测出年销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售这种口罩的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.
(I)求y关于x的函数关系;
(II)写出该公司销售这种口罩年获利W(万元)关于销售单价x(元)的函数关系式
(年获利=年销售总金额﹣年销售口罩的总进价﹣年总开支金额);当销售单价x为何值时,年获利最大?最大获利是多少?
(III)若公司希望该口罩一年的销售获利不低于57.5万元,则该公司这种口罩的销售单价应定在什么范围?在此条件下要使口罩的销售量最大,你认为销售单价应定为多少元?

【答案】解:(I)由题意,设y=kx+b,图象过点(70,5),(90,3), ,得k=﹣ ,b=12,

(II) 由题意,得

w=y(x﹣40)﹣z

=y(x﹣40)﹣(10y+42.5)

=(﹣ x+12)(x﹣40)﹣10(﹣ x+12)﹣42.5

=﹣0.1x2+17x﹣642.5=﹣ (x﹣85)2+80.

当销售单价为85元时,年获利最大,最大值为80万元

(III)令W≥57.5,﹣0.1x2+17x﹣642.5≥57.5,

整理得x2﹣170x+7000≤0,解得70≤x≤100.

故要使该口罩一年的销售获利不低于57.5万元,单价应在70元到100元之间.

又因为销售单价越低,销售量越大,所以要使销售量最大且获利不低于57.5万元,销售单价应定为70元.


【解析】(I)由图象可知y关于x的函数关系式是一次函数,设y=kx+b,用“两点法”可求解析式;(II)根据年获利=年销售总金额一年销售产品的总进价一年总开支金额,列出函数关系式;(III)令W≥57.5,从而确定销售单价x的范围,及二次函数w最大时,x的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x﹣2x
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)对所有θ∈[0, ]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C上的动点M到定点F(1,0)的距离和它到定直线x=3的距离之比是1:
(1)求曲线C的方程;
(2)过点F(1,0)的直线l与C交于A,B两点,当△ABO面积为 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2x﹣3sin( x)零点的个数是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1,点M与曲线C的焦点不重合,若点M关于曲线C的两个焦点的对称点分别为A,B,M,N是坐标平面内的两点,且线段MN的中点P恰好在双曲线C上,则|AN﹣BN|=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】;给定函数① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在区间(0,1)上单调递减的函数序号是(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的图象与x轴相邻两个交点间的距离为 ,且图象上一个最低点为M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)当x∈[ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差d不为0的等差数列,a1=2,Sn为其前n项和.
(1)当a3=6时,若a1 , a3 …, 成等比数列(其中3<n1<n2<…<nk),求nk的表达式;
(2)是否存在合适的公差d,使得{an}的任意前3n项中,前n项的和与后n项的和的比值等于定常数?求出d,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P﹣ABCD的体积.
(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;
(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

同步练习册答案