精英家教网 > 高中数学 > 题目详情
(2011•临沂二模)某单位为了制定节能减排的目标,先调查了用电量y(度)与气温x(°C)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温(°C) 18 13 10 -1
用电量(度) 24 34 38 64
由表中数据,得线性回归方程
?
y
=-2x+a
,当气温为-5°C时,预测用电量的度数约为
70
70
度.
分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,现在方程是一个确定的方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.
解答:解:由表格表格得
 
.
x
=
18+13+10-1
4
=10,
.
y
=
24+34+38+64
4
=40

(
.
x
.
y
)
在回归方程
?
y
=-2x+a

∴40=10×(-2)+a,
解得:a=60,
∴y=-2x+60.
当x=-5时,y=-2×(-5)+60=70.
故答案为:70.
点评:本题主要考查线性回归方程的求解与运用,解题的关键是线性回归方程 经过样本点的中心 同时注意理解线性回归方程中相关系数的意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•临沂二模)已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3,…,可以推出结论:x+
a
xn
≥n+1(n∈N*),则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)设x,y满足约束条件
4x-y≥0
x≤1
y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)对于函数f(x)=
3
sinx+cosx,下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的交点为R.
(I)求动点R的轨迹E的方程;
(II)设E的上顶点为M,直线l交曲线E于P、Q两点,问:是否存在这样的直线l,使点G(1,0)恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)如图是某建筑物的三视图,现需将其外部用油漆刷一遍,若每平方米用漆0.1千克,则共需油漆大约为(  )(尺寸如图,单位:米,π取3)

查看答案和解析>>

同步练习册答案