设数列的前项和为,对一切,点都在函数的图象上
(1)求归纳数列的通项公式(不必证明);
(2)将数列依次按1项、2项、3项、4项循环地分为(),,,;,,,;,…..,
分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,
求的值;
(3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围
(1);(2)2010;(3)
解析试题分析:(1)根据题意求处前几项,利用归纳推理猜想通项公式;(2)观察发现规律,可得:,是第25组中第4个括号内各数之和;(3)将恒成立问题转化为求函数的最值进行求解.
规律总结:1.归纳推理是合情推理的一种,对数学定理、结论的求解起到非常重要的作用;此类题型的关键是通过已知的项,发现内在的规律与联系,进而提出猜想;2.求序号较大的项时,往往要探索是否具有周期性;3.对于不等式的恒成立问题,主要思路是将所求参数进行分离,将其转化为求函数的最值问题.
试题解析:(1)因为点在函数的图象上,
故,所以.
令,得,所以;
令,得,所以;
令,得,所以.
由此猜想:
(2)因为(),所以数列依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),…. 每一次循环记为一组.由于每一个循环含有4个括号, 故 是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20. 同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20. 故各组第4个括号中各数之和构成等差数列,且公差为80. 注意到第一组中第4个括号内各数之和是68,
所以 .又=22,所以=2010.
(3)因为,故,
所以.
又,
故对一切都成立,就是
对一切都成立
设,则只需即可.
由于,
所以,故是单调递减,于是.
令,
即 ,解得,或.
综上所述,使得所给不等式对一切都成立的实数的取值范围是.
考点:1.归纳推理;2.等差数列;3.函数的单调性
科目:高中数学 来源: 题型:解答题
已知各项均为正数的数列的前项和为,且对任意的,都有。
(1)求数列的通项公式;
(2)若数列满足,且cn=anbn,求数列的前 项和;
(3)在(2)的条件下,是否存在整数,使得对任意的正整数,都有,若存在,求出的值;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com