【题目】在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC﹣A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则 的取值范围是( )
A.(1, )
B.( , )
C.( , )
D.( , )
【答案】D
【解析】解:设AB=BC=1,则AC=A1C1= ,设AA1=a,则CC1=a, ∴A1C= ,
∴C1到直线A1C的距离m= = ,
∵B1C1∥BC,BC平面A1BC,B1C1平面A1BC,
∴B1C1∥平面A1BC,
∴C1到平面A1BC的距离等于B1到平面A1BC的距离,
∴V = ,
∵BC⊥AB,BC⊥BB1 , AB∩BB1=B,
∴BC⊥平面ABB1A1 ,
∴BC⊥A1B,∴S = = = ,
又VV =V = = = ,
∴ n= ,∴n= .
∴ = = = .
∵AA1>AB,∴a>1,
∴0< < ,
∴ < .
故选D.
【考点精析】解答此题的关键在于理解棱柱的结构特征的相关知识,掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
科目:高中数学 来源: 题型:
【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的导函数为f'(x).
(Ⅰ)判断f(x)的单调性;
(Ⅱ)若关于x的方程f'(x)=m有两个实数根x1 , x2(x1<x2),求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC﹣A1B1C1的底面ABC是等边三角形,且AA1⊥底面ABC,M为AA1的中点,N在线段AB上,且AN=2NB,点P在CC1上.
(1)证明:平面BMC1⊥平面BCC1B1;
(2)当 为何值时,有PN∥平面BMC1?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域是(0, ),f′(x)是它的导函数,且f(x)+tanxf′(x)>0在定义域内恒成立,则( )
A.f( )> f( )
B. sin1?f(1)>f( )
C.f( )> f( )
D. f( )> f( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为 ,(α为参数),以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,直线l的极坐标方程为 .
(1)求曲线C的极坐标方程;
(2)设P为曲线C上一点,Q为直线l上一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.命题“若,则”为假命题
B.命题“若,则”的否命题为假命题
C.命题“若,则方程有实根”的逆命题为真命题
D.命题“若,则”的逆否命题为真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com