精英家教网 > 高中数学 > 题目详情
1.已知动点M(x,y)到定点F(0,2)的距离等于M到x轴的距离,求证:点M的轨迹方程是y=$\frac{{x}^{2}}{4}$+1.

分析 由题意,$\sqrt{{x}^{2}+(y-2)^{2}}$=|y|,化简可得点M的轨迹方程

解答 证明:由题意,$\sqrt{{x}^{2}+(y-2)^{2}}$=|y|,化简可得点M的轨迹方程是y=$\frac{{x}^{2}}{4}$+1.

点评 本题考查了与直线有关的动点的轨迹方程,考查了两点间的距离公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知a,b,c为正实数,$\frac{1}{{a}^{3}}$+$\frac{1}{{b}^{3}}$+$\frac{1}{{c}^{3}}$+27abc的最小值为m,解关于x的不等式|x+l|-2x<m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线3x-2y=0与圆(x-m)2+y2=1相交,则正整数m的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的结果为(  )
A.10B.17C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线M:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1的一个焦点是抛物线N:y2=2px(p>0)的焦点F.
(1)求抛物线N的标准方程;
(2)设双曲线M的左右顶点为C,D,过F且与x轴垂直的直线与抛物线交于A,B两点,求$\overrightarrow{AC}$•$\overrightarrow{BD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的周长为6
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形ABCD的一组对边过点F1和F2,求这个平行四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,x)且$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=0,则|3$\overrightarrow{b}$|的值为(  )
A.$\sqrt{140}$B.$\frac{3}{2}\sqrt{85}$C.$\sqrt{120}$D.$\sqrt{110}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}满足a3=7,a5+a7=26,其前n项和为Sn
(1)求{an}的通项公式及Sn
(2)令${b_n}=\frac{1}{{{S_n}-n}}(n∈{N^*})$,求数列{bn}的前n项和Tn,并求$\lim_{n→∞}{T_n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设全集U=R,若集合$A=\left\{{x\left|{\frac{1}{x}≥1}\right.}\right\}$,则∁UA={x|x≤0或x>1}.

查看答案和解析>>

同步练习册答案