12£®PM2.5ÊÇÖ¸´óÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³ÆΪ¿ÉÈë·Î¿ÅÁ£ÎÎÒ¹úPM2.5±ê×¼²ÉÓÃÊÀÎÀ×éÖ¯É趨µÄ×î¿íÏÞÖµ£®¼´PM2.5ÈÕ¾ùÖµÔÚ35΢¿Ë/Á¢·½Ã×ÒÔÏ¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£»ÔÚ35΢¿Ë/Á¢·½Ã×--75΢¿Ë/Á¢·½Ã×Ö®¼ä¿ÕÆøÖÊÁ¿Îª¶þ¼¶£»ÔÚ75΢¿Ë/Á¢·½Ã×ÒÔÉÏ¿ÕÆøÖÊÁ¿Îª³¬±ê£®Ä³Êл·±£¾Ö´ÓÊÐÇø½ñÄê9ÔÂÿÌìµÄPM2.5¼à²âÊý¾ÝÖУ¬°´ÏµÍ³³éÑù·½·¨³éÈ¡ÁËij6ÌìµÄÊý¾Ý×÷ΪÑù±¾£¬Æä¼à²âÖµÈ羥ҶͼËùʾ£®
£¨l£©¸ù¾ÝÑù±¾Êý¾Ý¹À¼Æ½ñÄê9Ô·ݸÃÊÐÇøÿÌìPM2.5µÄƽ¾ùÖµºÍ·½²î£»
£¨2£©´ÓËù³éÑùµÄ6ÌìÖÐÈÎÒâ³éÈ¡ÈýÌ죬¼Ç¦Î±íʾ³éÈ¡µÄÈýÌìÖпÕÆøÖÊÁ¿Îª¶þ¼¶µÄÌìÊý£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨1£©ÀûÓþ¥Ò¶Í¼ÄÜÇó³ö¸Ã×éÊý¾ÝµÄƽ¾ùÊýºÍ·½²î£®
£¨2£©Óɾ¥Ò¶Í¼¿ÉÖª£¬Ëù³éÑùµÄ6ÌìÖÐÓÐ2Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬ÓÐ4Ìì¿ÕÆøÖÊÁ¿Îª¶þ¼¶£¬Ôò¦Î¿ÉÄÜÈ¡µÄֵΪ1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼Áм°ÆÚÍû£®

½â´ð ½â£º£¨1£©$\overline{x}$=$\frac{1}{6}$¡Á£¨26+30+36+44+50+60£©=41
s2=$\frac{1}{6}$¡Á[£¨26-41£©2+£¨30-41£©2+£¨36-41£©2+£¨44-41£©2+£¨50-41£©2+£¨60-41£©2]=137¡­£¨4·Ö£©
¸ù¾ÝÑù±¾¹À¼Æ½ñÄê9Ô·ݸÃÊÐÇøÿÌìPM2.5µÄƽ¾ùֵΪ£º41΢¿Ë/Á¢·½Ã×£¬·½²îΪ137£®¡­£¨5·Ö£©
£¨2£©´Ó¾¥Ò¶Í¼Öª£¬Ëù³éÑùµÄ6ÌìÖÐÓÐ2Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬ÓÐ4Ìì¿ÕÆøÖÊÁ¿Îª¶þ¼¶£¬Ôò¦Î¿ÉÄÜÈ¡µÄֵΪ1£¬2£¬3£¬
ÆäÖÐP£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬$P£¨¦Î=2£©=\frac{C_4^2•C_2^1}{C_6^3}=\frac{3}{5}$£¬P£¨¦Î=2£©=$\frac{{C}_{4}^{3}{C}_{2}^{0}}{{C}_{6}^{3}}$=$\frac{1}{5}$¡­£¨10·Ö£©
¡à¦ÎµÄ·Ö²¼ÁÐΪ

¦Î012
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
¡àE¦Î=1¡Á$\frac{1}{5}$+2¡Á$\frac{3}{5}$+3¡Á$\frac{1}{5}$=2
¡à¦ÎµÄÊýѧÆÚÍûΪ2£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éƽ¾ùÊýºÍ·½²îµÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬¿¼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßC2£º$\left\{\begin{array}{l}{x=asin¦È}\\{y=3cos¦È}\end{array}\right.$£®£¨¦ÈΪ²ÎÊý£¬ÇÒa£¾0£©ÓÐÒ»¸ö¹«¹²µãÔÚxÖáÉÏ£¬ÔòʵÊýa=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑ֪ʵÊýc£¾0£¬c¡Ù1£¬ÉèÓÐÁ½¸öÃüÌ⣺ÃüÌâp£ºº¯Êýy=cxÊÇRÉϵĵ¥µ÷¼õº¯Êý£»ÃüÌâq£º¶ÔÓÚ?x¡ÊR£¬²»µÈʽx2+x+$\frac{c}{2}$£¾0ºã³ÉÁ¢£®ÈôÃüÌâp¡ÅqΪÕ棬p¡ÄqΪ¼Ù£¬ÇóʵÊýcµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®º¯Êýy=£¨$\frac{1}{2}$£©x-log2xµÄÁãµãΪx0£¬Ôò£¨¡¡¡¡£©
A£®x0£¼1B£®x0£¾3C£®2£¼x0£¼3D£®1£¼x0£¼2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÅ×ÎïÏßy2=2xÉÏÁ½µãA£¬Bµ½½¹µãµÄ¾àÀëÖ®ºÍΪ7£¬ÔòÏ߶ÎABÖеãµÄºá×ø±êΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÔË«ÇúÏß$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1µÄ×ó½¹µãΪԲÐÄ£¬ÇÒ¾­¹ý´ËË«ÇúÏßÓÒ¶¥µãµÄÔ²µÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
A£®£¨x-3£©2+y2=25B£®£¨x-3£©2+y2=16C£®£¨x+3£©2+y2=16D£®£¨x+3£©2+y2=25

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=cosxsin£¨x+$\frac{¦Ð}{3}$£©-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[0£¬$\frac{¦Ð}{2}$]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²C£ºx2+y2-6x+5=0£¬µãA£¬BÔÚÔ²ÉÏ£¬ÇÒAB=2$\sqrt{3}$Ôò|$\overrightarrow{OA}+\overrightarrow{OB}$|µÄÈ¡Öµ·¶Î§ÊÇ[4£¬8]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¡÷ABCµÄÈýÄÚ½ÇA£¬B£¬CËù¶Ô±ß³¤·Ö±ðÊÇa£¬b£¬c£¬ÉèÏòÁ¿$\overrightarrow n=£¨\sqrt{3}a+c£¬sinB-sinA£©$£¬$\overrightarrow m=£¨a+b£¬sinC£©$£¬Èô$\overrightarrow m¡Î\overrightarrow n$£¬Ôò½ÇBµÄ´óСΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{5¦Ð}{6}$C£®$\frac{¦Ð}{3}$D£®$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸