【题目】若f(x)=x2﹣2x﹣4lnx,则f(x)的单调递增区间为( )
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)
科目:高中数学 来源: 题型:
【题目】如图,BC=2,原点O是BC的中点,点A的坐标为 ( ,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(1)求向量 的坐标
(2)求向量 的夹角的余弦值大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]D,使f(x)在[a,b]上的值域为[a,b],则把y=f(x),x∈D叫闭函数.
(1)求闭函数y=x3符合条件②的区间[a,b];
(2)判断函数f(x)= x+ ,(x>0)是否为闭函数?并说明理由;
(3)已知[a,b]是正整数,且定义在(1,m)的函数y=k﹣ 是闭函数,求正整数m的最小值,及此时实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg | 箱产量≥50kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm)分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm)分别是:170、159、162、173、181、165、176、168、178、179.
(1)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);
(2)现从两队所有身高超过178cm的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a= ,且向量 与 共线,求边长b和c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分,某考试每道都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道能排除两个错误选项,另2题只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机挑选一个选项做答,且各题做答互不影响.
(Ⅰ)求该考生本次测验选择题得50分的概率;
(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com