精英家教网 > 高中数学 > 题目详情

【题目】若f(x)=x2﹣2x﹣4lnx,则f(x)的单调递增区间为(
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)

【答案】C
【解析】解:函数的定义域为(0,+∞) 求导函数可得:f′(x)=2x﹣2﹣
令f′(x)>0,可得2x﹣2﹣ >0,∴x2﹣x﹣2>0,∴x<﹣1或x>2
∵x>0,∴x>2
∴f(x)的单调递增区间为(2,+∞)
故选C.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,BC=2,原点O是BC的中点,点A的坐标为 ( ,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.

(1)求向量 的坐标
(2)求向量 的夹角的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD

(1)证明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算下列定积分:
(1) dx
(2) dx
(3)求如图所示阴影部分的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]D,使f(x)在[a,b]上的值域为[a,b],则把y=f(x),x∈D叫闭函数.
(1)求闭函数y=x3符合条件②的区间[a,b];
(2)判断函数f(x)= x+ ,(x>0)是否为闭函数?并说明理由;
(3)已知[a,b]是正整数,且定义在(1,m)的函数y=k﹣ 是闭函数,求正整数m的最小值,及此时实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm)分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm)分别是:170、159、162、173、181、165、176、168、178、179.
(1)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);

(2)现从两队所有身高超过178cm的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a= ,且向量 共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学测验共有10道选择题每道题共有四个选项且其中只有一个选项是正确的评分标准规定:每选对1道题得5不选或选错得0某考试每道都选并能确定其中有6道题能选对其余4道题无法确定正确选项但这4道题中有2道能排除两个错误选项2题只能排除一个错误选项于是该生做这4道题时每道题都从不能排除的选项中随机挑选一个选项做答且各题做答互不影响

()求该考生本次测验选择题得50分的概率;

()求该考生本次测验选择题所得分数的分布列和数学期望

查看答案和解析>>

同步练习册答案