精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点满足方程.

1)求点M的轨迹C的方程;

2)作曲线C关于轴对称的曲线,记为,在曲线C上任取一点,过点P作曲线C的切线l,若切线l与曲线交于AB两点,过点AB分别作曲线的切线,证明的交点必在曲线C.

【答案】1;(2)证明见解析.

【解析】

1)将方程两边平方化简即得解;

2)求出曲线在处的切线方程,联立直线与抛物线方程,消去,列出韦达定理,设,分别求出曲线上在两点处的切线的方程,求出的交点,即可得证.

1)由

两边平方并化简,得

所以点M的轨迹C的方程为.

2)由(1)及题意可知曲线

又由

所以点处的切线方程为

又因为点在曲线C上,

所以

所以切线方程为

联立消去整理得

所以,(*

又由,得

所以曲线上点处的切线的方程为

同理可知,曲线上点处的切线的方程为

联立方程组

又由(*)式得

所以的交点为,此点在曲线C上,

的交点必在曲线C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度,药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间,已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,正确的个数是(

①首次服用该药物1单位约10分钟后,药物发挥治疗作用

②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒

③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用

④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校将一次测试中高三年级学生的数学成绩统计如下表所示,在参加测试的学生中任取1人,其成绩不低于120分的概率为.

分数

频数

40

50

70

60

80

50

1)求的值;

2)若按照分层抽样的方法从成绩在的学生中抽取6人,再从这6人中随机抽取2人进行错题分析,求这2人中至少有1人的分数在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱的底面是直角三角形,

求证:平面

求二面角的余弦值;

求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,ADBC是等腰梯形CDEF的两条高,,点M是线段AE的中点,将该等腰梯形沿着两条高ADBC折叠成如图乙所示的四棱锥P-ABCDEF重合,记为点P.

1)求证:

2)求点M到平面BDP距离h.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),直线与曲线交于两点.

(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求曲线的极坐标方程;

(2)若,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的最大值;

2)若只有一个极值点.

i)求实数的取值范围;

ii)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

1)求曲线C的方程;

2)设不经过点的直线l与曲线C相交于AB两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.

查看答案和解析>>

同步练习册答案