精英家教网 > 高中数学 > 题目详情

【题目】设集合U={1,2,…,100},TU.对数列{an}(n∈N*),规定:
①若T=,则ST=0;
②若T={n1 , n2 , …,nk},则ST=a +a +…+a
例如:当an=2n,T={1,3,5}时,ST=a1+a3+a5=2+6+10=18.
已知等比数列{an}(n∈N*),a1=1,且当T={2,3}时,ST=12,求数列{an}的通项公式.

【答案】解:∵等比数列{an}(n∈N*),a1=1,且当T={2,3}时,ST=12,

∴a2+a3=12,即q+q2=12,

解得q=3或q=﹣4,

∴当q=3时,an=a =3n﹣1

当q=﹣4时,an=a =(﹣4)n﹣1

∴数列{an}的通项公式为


【解析】由题意可得当T={2,3}时,ST=12,∴a2+a3=12,即q+q2=12,

解得q=3或q=﹣4,∴当q=3时,an=a =3n﹣1

当q=﹣4时,an=a =(﹣4)n﹣1,∴数列{an}的通项公式为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数 没有零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中, ,O为平面内一点,且 ,M为劣弧 上一动点,且 ,则p+q的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxsin( ﹣x).
(Ⅰ)求f( )及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在区间[﹣ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角, ,平面ABCD⊥平面ABFE.

(1)求证:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a3+a4=12,公差d=2,记数列{a2n﹣1}的前n项和为Sn
(1)求Sn
(2)设数列{ }的前n项和为Tn , 若a2 , a5 , am成等比数列,求Tm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“ ≥2”的充要条件
C.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”
D.命题p:x∈R,x2+x-1<0,则﹁p:x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的函数f(x)满足f(x+2)=-f(x),且 ,则函数g(x)=lg x的图象与函数f(x)的图象的交点个数为( )
A.3
B.5
C.9
D.10

查看答案和解析>>

同步练习册答案