【题目】已知数列{an}满足:2a1+22a2+23a3+…+2nan=n(n∈N*),数列{ }的前n项和为Sn , 则S1S2S3…S10= .
科目:高中数学 来源: 题型:
【题目】从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有 种取法.在这 种取法中,可以分成两类:一类是取出的m个球全部为白球,共有 种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有 种取法.显然 ,即有等式: 成立.试根据上述思想化简下列式子: = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中不正确的是________.(填序号)
①若a∈R,则“<1”是“a>1”的必要不充分条件;
②“p∧q为真命题”是“p∨q为真命题”的必要不充分条件;
③若命题p:“x∈R,sin x+cos x≤”,则p是真命题;
④命题“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的最小值为.
(1)求;
(2)若,求及此时的最大值.
【答案】(1) ;(2)答案见解析.
【解析】试题分析:(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:①小于﹣1时②大于﹣1而小于1时③大于1时,根据二次函数求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一问的g(a)的第二和第三个解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.
试题解析:
(1)由
.这里
①若则当时,
②若当时,
③若则当时,
因此
(2)
①若,则有得,矛盾;
②若,则有即或(舍).
时, 此时
当时, 取得最大值为5.
点睛:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.
【题型】填空题
【结束】
21
【题目】已知两个不共线的向量的夹角为,且为正实数.
(1)若与垂直,求;
(2)若,求的最小值及对应的的值,并指出此时向量与的位置关系.
(3)若为锐角,对于正实数,关于的方程有两个不同的正实数解,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
【答案】(1);(2)
【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.
试题解析:(1)由B(10,4),C(2,-4),得BC中点D的坐标为(6,0),
所以AD的斜率为k==8,
所以BC边上的中线AD所在直线的方程为y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直线的斜率为k==1,
所以BC边上的高所在直线的斜率为-1,
所以BC边上的高所在直线的方程为y-8=-(x-7),即x+y-15=0.
【题型】解答题
【结束】
17
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com