精英家教网 > 高中数学 > 题目详情
a>0,a≠1,函数f(x)=ax2+x+1有最大值,则不等式loga(x2-x)>0的解集为
(
1-
5
2
,0)∪(1,
1+
5
2
)
(
1-
5
2
,0)∪(1,
1+
5
2
)
分析:根据复合函数f(x)=ax2+x+1有最大值,由其内函数有最小值,可得其外函数为减函数,进而分析出底数a的范围,结合对数函数的单调性和定义域可以将不等式loga(x2-x)>0化为整式不等式.
解答:解:∵函数f(x)=ax2+x+1有最大值,
由于u=x2+x+1有最小值
故y=au应为减函数
即0<a<1
故不等式loga(x2-x)>0可化为
0<x2-x<1
解得x∈(
1-
5
2
,0)∪(1,
1+
5
2
)

故答案为:(
1-
5
2
,0)∪(1,
1+
5
2
)
点评:本题考查的知识点是对数函数的图象与性质,指数函数的图象和性质,复合函数的性质,是函数图象和性质的综合应用,难度稍大,为中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建师大附中高三上学期期中考试理科数学卷 题型:选择题

设函数的定义域为R,若存在与无关的正常数M,使对一切实数均成立,则称为“有界泛函”,给出以下函数:.其中是“有界泛函”的个数为    (    )

    A.0            B.1            C.2            D.3

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年新疆农七师高级中学高三第三次模拟考试数学理卷 题型:选择题

设函             (    )

       A.0                        B.1                        C.                      D.5

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建师大附中高三上学期期中考试理科数学卷 题型:选择题

设函数的定义域为R,若存在与无关的正常数M,使对一切实数均成立,则称为“有界泛函”,给出以下函数:.其中是“有界泛函”的个数为    (    )

    A.0            B.1            C.2            D.3

 

查看答案和解析>>

科目:高中数学 来源:2010年吉林省高二下学期期末测试理科数学 题型:选择题

设函数f()的定义域为R,若存在与无关的正常数M,使对一切实数均成立,则称f()为“有界泛函”,给出以下函数:

①f()=      ②f()=2,   ③   ④其中是“有界泛函”的个数为(    )

    A.0          B.1        C.2        D.3

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在与x无关的正常数M,使对一切实数x均成立,则称f(x)为“有界泛函”,给出以下函数:①f(x) =x2,②f(x)=2x,③

其中是“有界泛函”的个数为

A.0       B.1       C.2       D.3

查看答案和解析>>

同步练习册答案