精英家教网 > 高中数学 > 题目详情
19.如图,在三棱锥A-BCD中,等边△BCD的边长为4,△ABD是以∠A为直角的等腰直角三角形,平面ABD⊥平面BCD,点M是棱BD的中点.
(1)求证:CM⊥AB:
(2)求三棱锥A-BCD的体积.

分析 (1)由三线合一可得CM⊥BD,由面面垂直的性质可得CM⊥平面ABD,故CM⊥AB;
(2)由勾股定理求出棱锥的高AM,代入体积公式即可.

解答 证明:(1)∵△BCD是等边三角形,M是BD中点,
∴CM⊥BD,∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,CM?平面BCD,
∴CM⊥平面ABD,∵AB?平面ABD,
∴CM⊥AB.(2)连结AM,∵△ABD是以∠A为直角的等腰直角三角形,
∴AM⊥BD,∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AM?平面ABD,
∴AM⊥平面BCD,
∵BC=CD=BD=4,∴S△BCD=$\frac{\sqrt{3}}{4}$×42=4$\sqrt{3}$.
∵AB=AD,∠BAD=90°,∴AB=2$\sqrt{2}$,BM=2.∴AM=$\sqrt{A{B}^{2}-B{M}^{2}}$=2.
∴V棱锥A-BCD=$\frac{1}{3}×{S}_{BCD}×AM$=$\frac{1}{3}×4\sqrt{3}×2$=$\frac{8\sqrt{3}}{3}$.

点评 本题考查了线面垂直的性质与判断,面面垂直的性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.如果数列存在成等比数列的子数列,那么称该数列为“弱等比数列”.已知m>1,设区间(m,+∞)内的三个正整数a,x,y满足:数列a2,$\sqrt{{y}^{2}-1}$,cos$\frac{π}{2}$,x2-1为“弱等比数列”,则$\frac{a}{x}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的最小正周期是π.若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,$\frac{π}{3}$],f(x)+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1,在平面直角坐标系xOy中,椭圆E的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,A,B为椭圆的左右顶点,F1、F2是左、右焦点.
(1)已知椭圆内有一点P(1,-1),在椭圆上有一动点M,则求|MP|+|MF2|的最大值和最小值分别是多少?
(2)如图1,若直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
(3)如图2,若直线l过左焦点F1交椭圆于A,B两点,直线MA,MB分别交直线x=-4于C,D两点,求证:以线段CD为直径的圆恒过两个定点.
(4)如图3,若M,N是椭圆E上关于原点对称的两点,点P是椭圆上除M,N外的任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN为定值.
(5)如图4,若动直线l:y=kx+m与椭圆E有且只有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.
(6)如图5,若过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.试探究:线段OF2上是否存在点M(m,0)使得$\overrightarrow{QP}•\overrightarrow{MP}=\overrightarrow{PQ}•\overrightarrow{MQ}$,若存在,求出实数的取值范围,若不存在,说明理由.
(7)如图6,若点P为抛物线D:y2=4x上的动点,设O为坐标原点,是否存在同时满足下列两个条件的△APM?①点M在椭圆C上;②点O为△APM的重心,若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知实数x,y,z满足x+y+z=1,求3x2+2y2+2z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.柯西不等式是由数学家柯西在研究数学分析中的“流数”问题时得到的.具体表述如下:对任意实数a1,a2,…,an和b1,b2,…bn(n∈N+,n≥2),都有(a12+a22+…+an2)(b12+b22+…bn2)≥(a1b1+a2b2+…+anbn2
(1)证明n=2时柯西不等式成立,并指出等号成立的条件;
(2)若对任意x∈[2,6],不等式3$\sqrt{x-2}$+2$\sqrt{6-x}$≤m恒成立,求实数m的取值范围(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).
(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?
(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在空间中,给出下列四个命题:
①平行于同一个平面的两条直线互相平行;
②垂直于同一个平面的两个平面互相平行;
③平行于同一条直线的两条直线互相平行;
④垂直于同一条直线的两条直线互相平行.
其中真命题的序号是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=6,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC; 
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)当$\frac{PM}{MD}=\frac{1}{2}$时,求四棱锥M-ECDF的体积.

查看答案和解析>>

同步练习册答案