精英家教网 > 高中数学 > 题目详情

如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).

(I) 若动点M满足,求点M的轨迹C;

(II)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围

 

【答案】

解:(I)由∴直线l的斜率为,………1分

故l的方程为,∴点A坐标为(1,0) ……………………………… 2分

    则

整理,得    ……………………………………………………4分

∴点M的轨迹为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆  5分

(II)如图,由题意知直线l的斜率存在且不为零,设l方程为y=k(x-2)(k≠0)①

将①代入,整理,得

由△>0得0<k2<.   设E(x1,y1),F(x2,y2)

②     ………………………………………………………7分

,由此可得

由②知

     …………………………10分

.

∴△OBE与△OBF面积之比的取值范围是(3-2,1)…12分.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足
AB
BM
+
2
|
AM
|
=0,求动点M的轨迹Q;
(2) F1,F2是轨迹Q的左、右焦点,过F1作直线l(不与x轴重合),l与轨迹Q相交于C,D,并与圆x2+y2=3相交于E,F.当
F2E
F2F
,且λ∈[
2
3
,1]时,求△F2CD的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线y=
1
4
x2
相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足
AB
BM
+
2
|
AM
|=0
,求动点M的轨迹C的方程;
(2)若过点B的直线l'(斜率不等于零)与(1)中的轨迹C交于不同
的两点E、F(E在B、F之间),且
BE
BF
,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足
AB
BM
+
2
|
AM
|=0
,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线l与抛物线y2=x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,若y1y2=-1,
(1)求证:OA⊥OB;
(2)M点的坐标为(1,0),求△AOB的面积的最小值.

查看答案和解析>>

同步练习册答案