精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:

1)若是等差数列,且公差,求数列的通项公式

2)若均是等差数列,且数列的公差,求数列的通项公式.

【答案】12

【解析】

1是等差数列,且公差,所以,由,进而算出,利用累加法,即可求出数列的通项公式

2)因为是等差数列,且数列的公差,所以,得出,根据题意,进而求出,可得出的首项和公差,求得,所以,分类讨论为奇数和偶数时,求出数列的通项公式.

1)因为是等差数列,且公差

所以

所以

因为

即:

所以

上面式子相加得:

所以

时也满足上面的通项,

综上:数列的通项公式

2)因为是等差数列,且数列的公差

所以①,

②,

得:,即

所以

因为是等差数列,设等差数列的公差为

所以,由此解得:

所以,满足,即

因为,所以,所以

①当时,,所以

②当时,,所以

综上:数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设点为椭圆的右焦点,圆且斜率为的直线交圆两点,交椭圆于点两点,已知当时,

(1)求椭圆的方程.

(2)当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4-5:不等式选讲

已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)当m=7时,求函数f(x)的定义域;

(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为

1)求曲线的极坐标方程和曲线的普通方程;

2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:

则下列结论中正确的是( )

A. 该家庭2018年食品的消费额是2014年食品的消费额的一半

B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当

C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍

D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客户考察了一款热销的净水器,使用寿命为十年,改款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换个一级滤芯就需要更换个二级滤芯,三级滤芯无需更换.其中一级滤芯每个元,二级滤芯每个元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为.如图是根据台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.

(1)结合图,写出集合

(2)根据以上信息,求出一台净水器在使用期内更换二级滤芯的费用大于元的概率(以台净水器更换二级滤芯的频率代替台净水器更换二级滤芯发生的概率);

(3)若在购买净水器的同时购买滤芯,则滤芯可享受折优惠(使用过程中如需再购买无优惠).假设上述台净水器在购机的同时,每台均购买个一级滤芯、个二级滤芯作为备用滤芯(其中),计算这台净水器在使用期内购买滤芯所需总费用的平均数.并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为个,则其中一级滤芯和二级滤芯的个数应分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成绩(分)

乙的成绩(分)

(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.

(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:

方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.

方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.

已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过椭圆右焦点的直线与椭圆交于两点,当直线轴垂直时,.

1)求椭圆的标准方程;

2)当直线轴不垂直时,在轴上是否存在一点(异于点),使轴上任意点到直线的距离均相等?若存在,求点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案