精英家教网 > 高中数学 > 题目详情

【题目】已知方程.

(Ⅰ)若此方程表示圆,求的取值范围;

(Ⅱ)若(Ⅰ)中的圆与直线相交于 两点,且为坐标原点),求

(Ⅲ)在(Ⅱ)的条件下,求以为直径的圆的方程.

【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ) .

【解析】试题分析:(1)将圆的方程化为标准方程,利用半径大于零,即可求解实数的取值范围;(2)直线方程与圆的方程联立,利用韦达定理及,建立方程,即可求解实数的值;(3)写出以为直径的圆的方程,代入条件即可求解结论.

试题解析:(1)原方程化为此方程表示圆,

.………………………………2

2)设

,得

.………………………………4

.

.………………6

,且,化为.…………8

代入,满足……………………9

3)以为直径的圆的方程为

……………………10

所求圆的方程为.……………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在边长为1的正方形内作两个互相外切的圆,同时每一个圆又与正方形的两相邻边相切,当一个圆为正方形内切圆时半径最大,另一圆半径最小,记其中一个圆的半径为x,两圆的面积之和为S,将S表示为x的函数。

求:(1)函数的解析式;

(2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)判断函数的单调性并证明;

(2)若关于的不等式有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足:对于st∈[0+∞),都有f(s)≥0f(t)≥0,且f(s)+f(t)≤f(s+t)则称函数f (x)“T函数”.

(I)试判断函数f1(x)=x2f2(x)=lg(x+1)是否是“T函数”,并说明理由;

(Ⅱ)f (x)“T函数”,且存在x0∈[0+∞),使f(f(x0))=x0.求证f (x0) =x0

(Ⅲ)试写出一个“T函数”f(x)满足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的个数最少.(只需写出结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为4的正方体ABCD﹣A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=logax在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数f(x)有两个零点x1 , x2 , 证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义方程 的实数根 叫做函数 的“新驻点”,若函数 的“新驻点”分别为 ,则 的大小关系为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案