精英家教网 > 高中数学 > 题目详情
18.设数列{an}是正项等比数列,且a1=2,a3=18,数列{bn}成等差数列,且b1+b2+b3+b4=a1+a2+a3,b1+b2+b9+b10=a1+a2+a4
(1)求数列{bn}的通项公式;
(2)设Pn=b1+b4+b7+…+b3n+1,Qn=b2+b4+b6+…+b2n+2,其中n∈N+,试比较Pn与Qn的大小,并证明你的结论.

分析 (1)由等比数列通项公式,结合题意算出数列{an}的公比q=3,可得an=2×3n-1.由此得到{bn}的前4项和等于26,以及b1+b2+b9+b10=62,利用等差数列的通项公式算出公差d=3,b1=2,得bn=3n-1;
(2)根据等差数列的性质,由等差数列求和公式算出Pn、Qn.作差后,因式分解得Pn-Qn=$\frac{3}{2}$[n(n-1)-2],结合n为正整数加以讨论,即可得到Pn与Qn的大小关系,从而使本题得到解决.

解答 解:(1)设{an}的公比为q(q>0),
由a3=a1q2得q2=$\frac{{a}_{3}}{{a}_{1}}$=$\frac{18}{2}$=9,解得q=3.
∴an=a1qn-1=2×3n-1
设数列{bn}的公差为d,由b1+b2+b3+b4=a1+a2+a3=2+6+18=26,
得4b1+$\frac{4×3}{2}$d=26,
由b1+b2+b9+b10=a1+a2+a4.可得4b1+18d=2+6+54=62,
解得b1=2,d=3,
所以bn=bn+(n-1)d=2+3(n-1)=3n-1;
(2)∵b1,b4,b7,…,b3n-2,b3n+1为以3d为公差的等差数列,
∴Pn=(n+1)b1+$\frac{n(n+1)}{2}$•3d=$\frac{9}{2}$n2+$\frac{13}{2}$n+2;
同理可得:b2,b4+,b6,…,b2n+2组成以2d为公差的等差数列,且b2=5,
∴Qn=(n+1)b2+$\frac{n(n+1)}{2}$•2d=3n2+8n+5.
因此,Pn-Qn=($\frac{9}{2}$n2+$\frac{13}{2}$n+2)-(3n2+8n+5)=$\frac{3}{2}$[n(n-1)-2].
所以对于正整数n,当n≥2时,Pn≥Qn;当n=1时,Pn<Qn

点评 本题给出等差数列与等比数列满足的关系式,求它们的通项公式,并比较两个和式的大小.着重考查了等差数列、等比数列的通项公式与求和公式、利用作差法比较两个式子的大小等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求下列函数的导数:
(1)y=$\frac{{x}^{2}-1}{2-x}$;
(2)y=$\frac{sinx}{1+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x+y2=${∫}_{0}^{y-x}$cos2tdt,求$\frac{dy}{dx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数h(x)=lnx-x-$\frac{m}{x}$有两个极值点x1,x2,且x1<x2
(1)写出函数h(x)的单调区间(用x1,x2表示,不需要说明理由);
(2)如果函数F(x)=h(x)+$\frac{1}{2}$x在(1,b)上为增函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一辆价值30万元的汽车,按每年20%的折旧率折旧,设x年后汽车价值y万元,则y与x的函数解析式为(  )
A.y=30×0.2xB.y=30×0.8xC.y=30×1.2xD.y=20×0.3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在五边形ABCDE中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AE}$=$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{c}$,$\overrightarrow{ED}$=$\overrightarrow{d}$,用$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$、$\overrightarrow{d}$表示$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.动点M与定点F(-1,0)的距离和它到定直线x=-4的距离的比是$\frac{1}{2}$,则点M的轨迹方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a,c是一元二次方程x2-7x+10=0的两根,且a<b<c,△ABC的面积为4.
(1)求a,b,c的值;
(2)求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1中,E、F分别是棱AB,BC的中点,O是底面ABCD的中心,求证EF⊥平面BB1O.

查看答案和解析>>

同步练习册答案