精英家教网 > 高中数学 > 题目详情
20.已知指数函数y=(2a+1)(a+2)x(a为常数),则实数a=0.

分析 根据指数函数的定义,列出方程组,求出实数a的值.

解答 解:∵函数y=(2a+1)(a+2)x(a为常数)为指数函数,
∴$\left\{\begin{array}{l}{2a+1=1}\\{a+2>0}\\{a+2≠1}\end{array}\right.$,
解得a=0.
故答案为:0.

点评 本题考查了指数函数的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如果关于x的方程$\sqrt{4-{x}^{2}}$=kx+1有两个不同的实根,则实数k的取值范围是[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=|log${\;}_{\frac{1}{2}}$x|的单调递增区间是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若θ∈($\frac{3π}{4}$,π),则下列各式错误的是④,并注明原因.
①sinθ+cosθ<0;
②sinθ-cosθ>0; 
③|sinθ|<|cosθ|; 
④sinθ+cosθ>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列对应关系,不是数集M到数集N上的函数是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若方程log2x+2x-a=0在区间[1,2]内有解,则实数a的取值范围是(  )
A.[2,3]B.[2,4]C.[2,5]D.[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设k>0,函数f(x)=$\frac{1}{2}{x^2}$+x+kln|x-1|.
(1)讨论函数f(x)的单调性;
(2)当函数f(x)有两个极值点,且0<θ<π时,证明:(2k-1)sinθ+(1-k)sin[(1-k)θ]>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A=$\{a|\frac{x+a}{{{x^2}-1}}=1有唯一实数解\}$,则集合A={-$\frac{5}{4}$,-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列四种说法:
①命题“$若α=\frac{π}{6},则sinα=\frac{1}{2}$的否命题是假命题;
②p:?x0∈R,使sinx0>1,则?p:?x∈R,sinx≤1;
③“$α=\frac{π}{2}+2kπ(k∈Z)$”是“函数y=sin(2x+α)为偶函数”的充要条件;
④命题p:“?x∈(0,$\frac{π}{2}$),使sinx+cosx=$\frac{1}{2}$”,命题q:
“在△ABC中,若sinA>sinB,则A>B”,那么命题(¬p)∧q为真命题.
其中正确的说法是①②④.

查看答案和解析>>

同步练习册答案