(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,。
(Ⅰ)求证:;
(Ⅱ)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(Ⅲ)求二面角的大小。
(Ⅰ)证明见解析。
(Ⅱ)为线段AE的中点,证明见解析。
(Ⅲ)arctan
本小题主要考查平面与平面垂直、直线与平面垂直、直线与平面平行、二面角等基础知识,考查空间想象能力、逻辑推理能力和数学探究意识,考查应用向量知识解决数学问题的能力。
解法一:
(Ⅰ)因为平面⊥平面,平面,
平面平面,
所以⊥平面
所以⊥。
因为为等腰直角三角形,,
所以
又因为,
所以,
即⊥,
所以⊥平面。………………………………4分
(Ⅱ)存在点,当为线段AE的中点时,PM∥平面
取BE的中点N,连接AN,MN,则MN∥=∥=PC
所以PMNC为平行四边形,所以PM∥CN
因为CN在平面BCE内,PM不在平面BCE内,
所以PM∥平面BCE………………………………8分
(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD
作FG⊥AB,交BA的延长线于G,则FG∥EA。从而,FG⊥平面ABCD
作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH
因此,∠AEF为二面角F-BD-A的平面角
因为FA=FE, ∠AEF=45°,
所以∠AFE=90°,∠FAG=45°.
设AB=1,则AE=1,AF=。
FG=AF·sinFAG=
在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=,
GH=BG·sinGBH=·=
在Rt△FGH中,tanFHG= =
故二面角F-BD-A的大小为arctan……………………………12分
解法二:
(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,
所以AE⊥AB.
又因为平面ABEF⊥平面ABCD,AE平面ABEF,
平面ABEF∩平面ABCD=AB,
所以AE⊥平面ABCD.
所以AE⊥AD.
因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.
设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,
E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因为FA=FE, ∠AEF = 45°,
所以∠AFE= 90°.
从而,.
所以,,.
,.
所以EF⊥BE, EF⊥BC.
因为BE平面BCE,BC∩BE=B ,
所以EF⊥平面BCE.
(Ⅱ) M(0,0,).P(1, ,0).
从而=(,).
于是
所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,
故PM∥平面BCE………………………………8分
(Ⅲ) 设平面BDF的一个法向量为,并设=(x,y,z)
=(1,1,0),
即
去y=1,则x=1,z=3,从=(0,0,3)
取平面ABD的一个法向量为=(0,0,1)
故二面角F-BD-A的大小为……………………………………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com