精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(Ⅰ)求证:

(Ⅱ)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;

(Ⅲ)求二面角的大小。

(Ⅰ)证明见解析。

(Ⅱ)为线段AE的中点,证明见解析。

(Ⅲ)arctan


解析:

本小题主要考查平面与平面垂直、直线与平面垂直、直线与平面平行、二面角等基础知识,考查空间想象能力、逻辑推理能力和数学探究意识,考查应用向量知识解决数学问题的能力。

解法一:

(Ⅰ)因为平面⊥平面,平面

平面平面

所以⊥平面

所以

因为为等腰直角三角形,

所以

又因为

所以

所以⊥平面。………………………………4分

(Ⅱ)存在点,当为线段AE的中点时,PM∥平面

取BE的中点N,连接AN,MN,则MN∥=∥=PC

所以PMNC为平行四边形,所以PM∥CN

因为CN在平面BCE内,PM不在平面BCE内,

所以PM∥平面BCE………………………………8分

(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD

作FG⊥AB,交BA的延长线于G,则FG∥EA。从而,FG⊥平面ABCD

作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH

因此,∠AEF为二面角F-BD-A的平面角

因为FA=FE, ∠AEF=45°,

所以∠AFE=90°,∠FAG=45°.

设AB=1,则AE=1,AF=

FG=AF·sinFAG=

在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=,

GH=BG·sinGBH=·=

在Rt△FGH中,tanFHG= =

故二面角F-BD-A的大小为arctan……………………………12分

解法二:

(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,

所以AE⊥AB.

又因为平面ABEF⊥平面ABCD,AE平面ABEF,

平面ABEF∩平面ABCD=AB,

所以AE⊥平面ABCD.

所以AE⊥AD.

因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.

设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,

E ( 0, 0, 1 ), C ( 1, 1, 0 ).

因为FA=FE, ∠AEF = 45°,

所以∠AFE= 90°.

从而,.

所以,,.

,.

所以EF⊥BE, EF⊥BC.

因为BE平面BCE,BC∩BE=B ,

所以EF⊥平面BCE.

 (Ⅱ) M(0,0,).P(1, ,0).

从而=().

于是

所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,

故PM∥平面BCE………………………………8分

(Ⅲ) 设平面BDF的一个法向量为,并设=(x,y,z)

=(1,1,0),

     即

去y=1,则x=1,z=3,从=(0,0,3)

取平面ABD的一个法向量为=(0,0,1)

故二面角F-BD-A的大小为……………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案