【题目】定义在上的函数满足:对于任意实数都有恒成立,且当时,.
(Ⅰ)判定函数的单调性,并加以证明;
(Ⅱ)设,若函数有三个零点从小到大分别为,求的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, ,且平面, 为棱的中点.
(1)求证: ∥平面;
(2)求证:平面平面;
(3)当四面体的体积最大时,判断直线与直线是否垂直,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌服装店五一进行促销活动,店老板为了扩大品牌的知名度同时增强活动的趣味性,约定打折办法如下:有两个不透明袋子,一个袋中放着编号为1,2,3的三个小球,另一个袋中放着编号为4,5的两个小球(小球除编号外其它都相同),顾客需从两个袋中各抽一个小球,两球的编号之和即为该顾客买衣服所打的折数(如,一位顾客抽得的两个小球的编号分别为2,5,则该顾客所习的买衣服打7折).要求每位顾客先确定购买衣服后再取球确定打折数.已知三位顾客各买了一件衣服.
(1)求三位顾客中恰有两位顾客的衣服均打6折的概率;
(2)两位顾客都选了定价为2000元的一件衣服,设为打折后两位顾客的消费总额,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)当时,求曲线在点处的切线方程;
(2)当时,求在区间上的最大值和最小值;
(3)当时,若方程在区间上有唯一解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与的大小关系并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从高一年级随机选取100名学生,对他们期中考试的数学和语文成绩进行分析,成绩如图所示.
(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;
(II)从语文成绩大于80分的学生中随机选取两人,记这两人中数学成绩高于80分的人数为,求的分布列和数学期望(;
(Ill)试判断这100名学生数学成绩的方差与语文成绩的方差的大小.(只需写出结论).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com