精英家教网 > 高中数学 > 题目详情
20.如图所示,已知ABCD是直角梯形,∠BAD=90°,AD∥BC,AD=2AB=2BC,PA⊥面ABCD.
(I)证明:PC⊥CD;
(II)在线段PA上确定一点E,使得BE∥面PCD.

分析 (I)取AD的中点F,连接CF,证明:CD⊥面PAC,即可证明PC⊥CD;
(II)取线段PA的中点E,可使得BE∥面PCD.

解答 证明:(Ⅰ)取AD的中点F,连接CF,
∵BC∥AF,BC=AF,∴ABCF为平行四边形,------(1分)
∵AB=BC,∠BAD=90°,
∴ABCF为正方形,-------------------------(2分)
设AB=1,则BC=1,AD=2,
∴$AC=\sqrt{2}$,$CD=\sqrt{2}$,∴AC2+CD2=AD2
∴AC⊥CD,-------------------------------(3分)
∵PA⊥面ABCD,CD?面ABCD,
∴PA⊥CD,
∵PA与AC相交,PA?面PAC,AC?面PAC,
∴CD⊥面PAC,-------------------------------------(5分)
∵PC?面PAC,
∴PC⊥CD.-----------------------------------------(6分)
(Ⅱ)取线段PA的中点E,可使得BE∥面PCD.
取PD的中点M,连接ME,MC,---------------(7分)

∴$ME∥AD,ME=\frac{1}{2}AD$,-----------------------(8分)
∵$BC∥AD,BC=\frac{1}{2}AD$,
∴BC∥ME,BC=ME,-------------------------(9分)
∴BCME为平行四边形,
∴BE∥CM,---------------------------(11分)
∵CM?面PCD,BE?面PCD,
∴BE∥面PCD.--------------------------------(12分)

点评 本题考查线面平行、垂直的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设椭圆C1的中心和抛物线C2的顶点均为原点O,C1、C2的焦点均在x轴上,在C1、C2上各取两个点,将其坐标记录于表格中:
(1)求C1、C2的标准方程;
(2)过C2的焦点F作斜率为k的直线l,与C2交于A、B两点,若l与C1交于C、D两点,若$\frac{|AB|}{|CD|}=\frac{5}{3}$,求直线l的方程
x3-24$\sqrt{3}$
y$-2\sqrt{3}$0-4$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=\frac{{\sqrt{{{log}_{\frac{1}{2}}}({4x-3})}}}{x-1}$的定义域为($\frac{3}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=sin(2x+θ)(-$\frac{π}{2}$<θ<$\frac{π}{2}$)的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,$\frac{\sqrt{3}}{2}$),则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2}{3}$πD.$\frac{5}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果曲线2|x|-y-4=0与曲线x2+λy2=4(λ<0)恰好有两个不同的公共点,则实数λ的取值范围是[-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设Sn是等差数列{an}的前n项和,且a3=S3=3,则a4+a5=(  )
A.12B.9C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p:?x∈R,x2+3x=4,则¬p是?x∈R,x2+3x≠4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=loga(2x2-x)(a>0,且a≠1)在区间($\frac{1}{2}$,1)内恒有f(x)<0,则函数f(x)的单调递增区间是(  )
A.(-∞,0)B.(-∞,$\frac{1}{4}$)C.($\frac{1}{2}$,+∞)D.($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=-x2-2x,设a=ln2,b=log${\;}_{\frac{1}{3}}$2,c=3${\;}^{\frac{1}{2}}$,则必有(  )
A.f(b)>f(a)>f(c)B.f(c)>f(a)>f(b)C.f(a)>f(b)>f(c)D.f(b)>f(c)>f(a)

查看答案和解析>>

同步练习册答案