精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3x-2

(1)判断该函数在区间(2,+∞)上的单调性,并给出证明;
(2)求该函数在区间[3,6]上的最大值和最小值.
分析:(1)利用函数单调性的定义证明函数的单调性.(2)利用函数的单调性求函数的最值.
解答:解:(1)任设两个变量2<x1<x2,则f(x1)-f(x2)=
3
x1-2
-
3
x2-2
=
3(x2-x1)
(x1-2)(x2-2)

因为2<x1<x2,所以x2-x1>0,(x1-2)(x2-2)>0,所以f(x1)-f(x2)>0,f(x1)>f(x2).
所以函数f(x)=
3
x-2
在区间(2,+∞)上的单调递减,是减函数.
(2)因为函数f(x)=
3
x-2
在区间[3,6]上的单调递减,所以函数的最大值为f(3)=3.
最小值为f(6)=
3
4
点评:本题主要考查函数单调性的判断以及利用单调性求函数的最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案