精英家教网 > 高中数学 > 题目详情
18.不等式$\frac{ax}{x-1}$<1解集为(-∞,1)∪(2,+∞),则log2(x2-1)a的定义域为{x|x>1或x<-1}.

分析 由不等式与方程的关系知$\frac{2a}{1}$=1,从而化简log2(x2-1)a=log2$\sqrt{{x}^{2}-1}$,从而得到x2-1>0,从而解得.

解答 解:∵不等式$\frac{ax}{x-1}$<1解集为(-∞,1)∪(2,+∞),
∴$\frac{2a}{1}$=1,
∴a=$\frac{1}{2}$,
∴log2(x2-1)a=log2$\sqrt{{x}^{2}-1}$,
∴x2-1>0,
∴x>1或x<-1,
故log2(x2-1)a的定义域为为{x|x>1或x<-1}.
故答案为;{x|x>1或x<-1}.

点评 本题考查了不等式与方程的关系应用及函数的定义域的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆的焦点在坐标轴上,两焦点的中点为原点,且椭圆经过两点($\sqrt{6}$,1)和(-$\sqrt{3}$,-$\sqrt{2}$),求椭圆的方程、顶点坐标、焦点坐标和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=a+$\frac{2}{{e}^{x}+1}$(a∈R)是奇函数.
(1)求a的值;
(2)证明f(x)在R上是单调减函数;
(3)设直线y=$\frac{1-k}{1+k}$(k∈R且为常数)与函数f(x)的图象有交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果直线x+2ay-1=0与直线(2a-1)x-ay-1=0平行,则a等于0或$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线y2=2px(p>0)的焦点为F,准线为l,准线l与坐标轴交于点M,过焦点且斜率为$\frac{\sqrt{2}}{2}$的直线交抛物线于A,B两点,且|AB|=12.
(I)求抛物线的标准方程;
(Ⅱ)若点P为该抛物线上的动点,求$\frac{|PF|}{|PM|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知点P(-1,0),Q(2,1),直线l:ax+by+c=0,其中实数a,b,c成等差数列,若点P在直线l上的射影为H,则线段QH的取值范围是$[\sqrt{2},3\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=x2+(a-4)x+4-2a,g(x)=2x+1对任意的x1,x2∈(0,1)都有f(x1)>g(x2),a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,由部分抛物线y2=mx+1(m>0,x≥0)和半圆x2+y2=r2(x≤0)所组成的曲线称为“黄金抛物线C”,若“黄金抛物线C”经过点(3,2)和(-$\frac{1}{2},\frac{\sqrt{3}}{2}$).
(1)求“黄金抛物线C”的方程;
(2)设P(0,1)和Q(0,-1),过点P作直线l与“黄金抛物线C”相交于A,P,B三点,问是否存在这样的直线l,使得QP平分∠AQB?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l是直线,α,β是两个不同的平面(  )
A.若l∥α,l∥β,则α∥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,l⊥β,则α⊥βD.若α⊥β,l∥α,则α⊥β

查看答案和解析>>

同步练习册答案