精英家教网 > 高中数学 > 题目详情

设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)数列{bn}满足数学公式,求b1•b2•…•bn(用含n的式子表示).

解:(Ⅰ)由a1,a2,a4 成等比数列得:(a1+2)2=a1(a1+6).…2分
解得a1=2.…4分 故数列{an}的通项公式是an=2n(n∈N*).…6分
(Ⅱ)bn=22n=4n (n∈N*). …8分
则b1•b2•…•bn =41+2+…+n …10分
==2n(n+1)(n∈N*).…13分
分析:(Ⅰ)由a1,a2,a4 成等比数列得:(a1+2)2=a1(a1+6),解得a1=2,即可得到数列{an}的通项公式an的解析式.
(Ⅱ)由bn=22n=4n ,可得b1•b2•…•bn =41+2+…+n,利用等差数列的前n项和公式运算求得最后结果.
点评:本题主要考查等比数列的定义和性质,等差数列的通项公式、前n项和公式的应用,求出an=2n,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d>0)的等差数列.若
1
a1a2
+
1
a2a3
+
1
a3a4
=
3
4
,且其前6项的和S6=21,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是一个公差为1的等差数列,且a1+a2+a3+…+a98=137,则a2+a4+a6+…a98=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d≠0)的等差数列,它的前n项和为Sn,S10=110且a1,a2,a4成等比数列.
(Ⅰ)证明a1=d;
(Ⅱ)求公差d的值和数列{an}的前n项和Sn
(Ⅲ)设bn=
1Sn
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列an的通项公式an
(Ⅱ)数列{bn}满足bn=n•2an,设{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)数列{bn}满足bn=2an,求b1•b2•…•bn(用含n的式子表示).

查看答案和解析>>

同步练习册答案