精英家教网 > 高中数学 > 题目详情
8.已知k<0,则曲线$\frac{x^2}{9}+\frac{y^2}{4}=1$和$\frac{x^2}{9-k}+\frac{y^2}{4-k}=1$有相同的(  )
A.顶点B.焦点C.离心率D.长轴长

分析 求出两个椭圆的焦距,判断选项即可.

解答 解:曲线$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦距为:2$\sqrt{5}$;
k<0,$\frac{x^2}{9-k}+\frac{y^2}{4-k}=1$的焦距为:2$\sqrt{9-k-4+k}$=2$\sqrt{5}$.
焦点坐标都在x轴上,焦点坐标相同.
故选:B.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)为定义在R上的奇函数,且在(0,+∞)上是增函数,f(2)=0,则x[f(x)-f(-x)]<0的解集为(-2,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]是增函数,设a=f(log47),b=f(log${\;}_{\frac{1}{2}}$3),c=f(0.20.6),则a,b,c的大小关系是b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x+1|+|x-1|,x∈R,不等式f(x)≤2$\sqrt{3}$的解集为M.
(1)求M;
(2)当a,b∈M时,证明:$\sqrt{3}$|a+b|≤|ab+3|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\underset{lim}{n→x}$($\frac{2+3}{6}$+$\frac{{2}^{2}+{3}^{2}}{{6}^{2}}$+$\frac{{2}^{3}+{3}^{3}}{{6}^{3}}$+…+$\frac{{2}^{n}+{3}^{n}}{{6}^{n}}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x),是它的导函数,且恒有sinx•f′(x)>cosx•f(x)成立,则(  )
A.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)B.$\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(I)求|2x-1|+|2x+3|<5的解集;
(II)设a,b,c均为正实数,试证明不等式$\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}≥\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}$,并说明等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+bx+c在点(e,f(e))处的切线斜率为$\frac{e+1}{e}$,且切线在x,y轴上的截距相等.
(1)求f(x)的表达式;
(2)若f(x)满足f(x)≥g(x)恒成立,则称f(x)是g(x)的一个“上界函数”,如果函数f(x)为g(x)=$\frac{t}{x}$-1nx+x(t为实数)的一个“上界函数”,求证:函数g(x)的图象上一定不存在不同的两点(x1,g(x1)),(x2,g(x2))(其中x1,x2∈(0,+∞)),使得g(x1)=g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知α∈(0,2π),则满足不等式$sin2α>{∫}_{0}^{α}cosxdx$的α的取值范围是(  )
A..$(\frac{π}{3},\frac{5π}{3})$B.(0,$\frac{π}{3}$)∪($\frac{5π}{3}$,2π)C.(0,$\frac{π}{3}$)∪(π,$\frac{5π}{3}$)D.($\frac{π}{3}$,π)∪($\frac{5π}{3}$,2π)

查看答案和解析>>

同步练习册答案