已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.
(1)若△ABC的面积S=,求b+c的值.
(2)求b+c的取值范围.
(1)4;(2)(2,4]
解析试题分析:(1)由=(-cos,sin),=(cos,sin),且·=.可求得角A的值,又因为△ABC的面积S=,a=2,在三角形中利用余弦与三角形的面积公式,即可解出b,c的值或者直接构造b+c,即可得到结论.
(2)由(1)可知角A,以及边长.用角B结合正弦定理分别表示出b,c.再结合角B的范围,求出b+c的取值范围即可.
(1)∵=(-cos,sin),=(cos,sin),且·=,
∴-cos2+sin2=,即-cosA=,
又A∈(0,π),∴A=. …………3分
又由S△ABC=bcsinA=,所以bc=4,
由余弦定理得:a2=b2+c2-2bc·cos=b2+c2+bc,
∴16=(b+c)2,故b+c=4.………7分
(2)由正弦定理得:==4,又B+C=p-A=,
∴b+c=4sinB+4sinC=4sinB+4sin(-B)=4sin(B+), 12分
∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是(2,4]…..14分
考点:1.三角函数恒等变换.2.正余弦定理的应用.3.三角函数最值的求法.
科目:高中数学 来源: 题型:解答题
已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若△ABC面积为,c=2,A=60º,求a,b的值;
(2)若acosA=bcosB,试判断△ABC的形状,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点A、B是单位圆上的两点,点C是圆与轴的正半轴的交点,将锐角的终边按逆时针方向旋转到.
(1)若点A的坐标为,求的值;
(2)用表示,并求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com