精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)与双曲线
x2
a2
-
y2
b2
=1
有相同的焦点为F,A是两条曲线的一个交点,且AF⊥x轴,则双曲线的离心率是______.
∵抛物线的焦点和双曲线的焦点相同,
∴p=2c
∵A是它们的一个公共点,且AF垂直x轴
设A点的纵坐标大于0
∴|AF|=p,∴A(
p
2
,p)
∵点A在双曲线上
p2
4a2
-
p2
b2
=1
∵p=2c,b2=c2-a2
c2
a2
-
4c2
c2-a2
=1
化简得:c4-6c2a2+a4=0
∴e4-6e2+1=0
∵e2>1
∴e2=3+2
2

∴e=1+
2

故答案为:1+
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案