精英家教网 > 高中数学 > 题目详情
、(本小题满分13分).在正方体ABCD-A1B1C1D1中,M、N、P分别是CC1、B1C1、C1D1的中点.(温馨提示:该题要在答题卡上作图,否则扣分)。
(1) 求异面直线PN、AC所成角;  (2) 求证:平面MNP∥平面A1BD.
证明:(1) 90度  (2) ∵面MNP∥面A1BD
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(理科)已知是底面边长为1的正四棱柱,的交点.
⑴设与底面所成的角的大小为,二面角的大小为,试确定的一个等量关系,并给出证明;
⑵若点到平面的距离为,求正四棱柱的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,空间四边形S-ABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于(    )
A.90°         B.60°         C.45°         D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
1.(本题满分14分)如图,矩形中,
上的点,且.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知不重合的平面、β和不重合的直线m、n,给出下列命题:
m∥n,n??m∥
m∥n,n??m与不相交;
∩β=m,n∥,n∥β?n∥m;
∥β,m∥β,m?m∥
m∥,n∥β,m∥n?∥β;
m?,n?β,⊥β?m⊥n;
m⊥,n⊥β,与β相交?m与n相交;
m⊥n,n?β,mβ?m⊥β;

其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分9分)如图,圆锥中,为底面圆的两条直径,,且的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求圆锥的表面积;
(Ⅲ)求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在三棱锥中,底面

分别在棱上,且            
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的余弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( 14分)在如图的多面体中,⊥平面,的中点.
(1) 求证:平面
(2) 求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(   )
A.垂直    B.平行     C.相交      D.位置关系不确定

查看答案和解析>>

同步练习册答案