【题目】如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题
①过M点有且只有一条直线与直线AB、B1C1都相交;
②过M点有且只有一条直线与直线AB、B1C1都垂直;
③过M点有且只有一个平面与直线AB、B1C1都相交;
④过M点有且只有一个平面与直线AB、B1C1都平行.
其中真命题是( )
A.②③④
B.①③④
C.①②④
D.①②③
【答案】C
【解析】解:直线AB与B1C1 是两条互相垂直的异面直线,点M不在这两异面直线中的任何一条上,如图所示:
取C1C的中点N,则MN∥AB,且 MN=AB,设BN 与B1C1交于H,则点 A、B、M、N、H 共面,
直线HM必与AB直线相交于某点O.
所以,过M点有且只有一条直线HO与直线AB、B1C1都相交;故①正确.
过M点有且只有一条直线与直线AB、B1C1都垂直,此垂线就是棱DD1 , 故②正确.
过M点有无数个平面与直线AB、B1C1都相交,故 ③不正确.
过M点有且只有一个平面与直线AB、B1C1都平行,此平面就是过M点与正方体的上下底都平行的平面,故④正确.
综上,①②④正确,③不正确,
故选 C.
【考点精析】认真审题,首先需要了解直线与平面平行的性质(一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行),还要掌握平面与平面垂直的性质(两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为 . (Ⅰ)求f(x)的解析式;
(Ⅱ)当 ,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一个半径适当的小球放入如图所示的容器自上方的入口处,小球自由下落,小气在下落的过程中,将遇到黑色障碍物3次,最后落入A袋或B袋中,已知小球每次遇到障碍物时,向左、右两边下落的概率分别是 ,
(1)分别求出小球落入A袋和B袋中的概率;
(2)在容器 入口处依次放入4个小球,记ξ为落入B袋中的小球个数,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1 , D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形
(1)在图中画出这个正方形(不必说出画法和理由)
(2)求平面α把该长方体分成的两部分体积的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出最小二乘法下的回归直线方程 = x+ 系数公式:
= ,
假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如表的统计资料:
使用年限x (年) | 2 | 3 | 4 | 5 | 6 |
维修费用y(万元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.
(1)求椭圆的方程及离心率的值;
(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且,求直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com