精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若,则当时,讨论单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:(1)本问考查利用导数研究函数单调性.首先确定函数定义域为,根据题中条件,然后求导数,接下来对导数整理得到,由于,所以 ,且时, ,然后分别讨论 时函数的单调性;(2)本问主要考查“有解”问题,首先需要将问题等价转化,即当时, ,因此问题转化为求函数在区间上的最大值,由已知条件,则,接下来主要考虑分子,判别式,分别讨论 时函数的最大值,再根据即可求出的取值范围.

试题解析:(1),

,

,得

时, ,函数在定义域内单调递减

时,在区间

在区间上单调递增,

时,在区间单调递减,在区间单调递增,

(2)由题意知,当时, 上的最大值,

时,

(1) 当时,

上单调递增,

((2))当时的两根分别为

综上,当时,

所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+2)x+2<0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为,实验30天共投入实验费用17700元.

(1)求的值及平均每天耗资最少时实验的天数;

(2)现有某知名企业对该项实验进行赞助,实验天共赞助.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一长为24米的篱笆,一面利用墙(墙最大长度是10米)围成一个矩形花圃,设该花圃宽AB为x米,面积是y平方米,

(1)求出y关于x的函数解析式,并指出x的取值范围;

(2)当花圃一边AB为多少米时,花圃面积最大?并求出这个最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求证:平面ABC1⊥平面A1ACC1
(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若 , 试求f(x)在区间[﹣2,6]上的最值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且),(其中的导函数).

(Ⅰ)当时,求的极大值点;

(Ⅱ)讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,

.

(1)求证:

(2)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

同步练习册答案