【题目】已知椭圆的左焦点与抛物线 的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值.
(1)求椭圆的方程;
(2)求面积的最大值.
【答案】(1) (2)
【解析】试题分析:(1)由抛物线焦点可得c,再根据离心率可得a,即得b(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值
试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,
又椭圆E的离心率为,得a=,
于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:.
(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,
由整理得(t2+2)y2+2tmy+m2﹣2=0
,,
,
=
=(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣=.
要使为定值,则,解得m=1或m=(舍)
当m=1时,|AB|=|y1﹣y2|=,
点O到直线AB的距离d=,
△OAB面积s==.
∴当t=0,△OAB面积的最大值为.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立极坐标系,曲线的参数方程为(为参数).
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设为曲线上任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)是一个水平放置的正三棱柱, 是棱的中点.正三棱柱的正(主)视图如图(2).
(Ⅰ)求正三棱柱的体积;
(Ⅱ)证明: ;
(Ⅲ)图(1)中垂直于平面的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】地为绿化环境,移栽了银杏树棵,梧桐树棵.它们移栽后的成活率分别
为、,每棵树是否存活互不影响,在移栽的棵树中:
(1)求银杏树都成活且梧桐树成活棵的概率;
(2)求成活的棵树的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的准线与轴交于点,过点做圆的两条切线,切点为.
(1)求抛物线的方程;
(2)若直线是讲过定点的一条直线,且与抛物线交于两点,过定点作的垂线与抛物线交于两点,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取100名学生,测得他们的身高(单位: ),按照区间,
分组,得到样本身高的频率分布直方图(如图).
(1)求频率分布直方图中的值及身高在以上的学生人数;
(2)将身高在区间内的学生依次记为三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;
(3)在(2)的条件下,要从6名学生中抽取2人.用列举法计算组中至少有1人被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点与抛物线 的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值.
(1)求椭圆的方程;
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为, .
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)在曲线上求一点,使它到直线: (为参数)的距离最短,写出点的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com