精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
sinx
+
1
cosx
,在下列结论中:
①π是f(x)的一个周期;
②f(x)的图象关于直线x=
π
4
对称;
③f(x)在(-
π
2
,0)上单调递减.
正确结论的个数为(  )
A、0B、1C、2D、3
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象
专题:三角函数的图像与性质
分析:变形可得f(x+π)≠f(x),可判①错误;
可得f(
π
2
-x)=f(x),可判②正确;
换元t=sinx+cosx,可得y=
2t
t2-1
,求导数可判单调性.
解答: 解:∵f(x)=
1
sinx
+
1
cosx

∴f(x+π)=
1
sin(x+π)
+
1
cos(x+π)
=-
1
sinx
-
1
cosx
≠f(x),
∴π不是f(x)的周期,故①错误;
∵f(
π
2
-x)=
1
sin(
π
2
-x)
+
1
cos(
π
2
-x)
=
1
cosx
+
1
sinx
=f(x),
∴f(x)的图象关于直线x=
π
4
对称,故②正确;
设t=sinx+cosx,则sinxcosx=
t2-1
2

∴y=
1
sinx
+
1
cosx
=
sinx+cosx
sinxcosx
=
2t
t2-1

当x∈(-
π
2
,0)时,t=sinx+cosx=
2
sin(x+
π
4
)∈(-1,1),
求导数可得y′=
2(t2-1)-2t•2t
(t2-1)2
=
-2t2-2
(t2-1)2
<0,
∴函数单调递减,故③正确.
故选:C
点评:本题考查三角函数的性质,涉及周期性和对称性,以及导数法判函数的单调性,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点p(1,y)是α终边上一点,cosα=
3
6
,求y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知a3=24,a6=18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(
π
2
-x)的图象(  )
A、关于x轴对称
B、关于y轴对称
C、关于原点对称
D、关于直线x=
π
2
对称

查看答案和解析>>

科目:高中数学 来源: 题型:

由xy=4,x=1,x=4,y=0围成的平面区域绕x轴旋转所得的旋转体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λ•μ=
3
16
,则双曲线的离心率为(  )
A、
2
3
3
B、
3
5
5
C、
3
2
2
D、
9
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1(a,b>0),短轴长为4,离心率为
2
2
,O为坐标原点,
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
OA
OB
?若存在,求出该圆的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn,a1=t(t≠-1),Sn+2an+1+n+1=0,且数列{an+1}为等比数列.
(1)求实数t的值;
(2)设Tn为数列{bn}的前n项和,b1=1,且
Tn+1
n+1
-
Tn
n
=1
.若对任意的n∈N*,使得不等式
b1+1
a1+1
+
b2+1
a2+1
+…+
bn+1
an+1
m
an+1
恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

“光盘行动”倡导厉行节约反对铺张浪费,带动大家珍惜粮食,吃光盘子中的食物.为调查某地区响应“光盘行动”的实际情况,某校几位同学组成研究性学习小组,从某社区[10,60]岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
分组頻数频率“光盘族”占本组的比例
[10,20﹚1500.1530%
[20,30﹚200y45%
[30,40﹚3000.350%
[40,50﹚x0.255%
[50,60﹚1500.1550%
(Ⅰ)求x,y,n的值,并估计本社区[10,60]岁的人群中“光盘族”人数所占的比例;
(Ⅱ)从年龄段在[20,30)与[30,40)的“光盘族”中,采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求2名领队的年龄之和X的分布列和数学期望(假定每人年龄段的中间值计算).

查看答案和解析>>

同步练习册答案