精英家教网 > 高中数学 > 题目详情

在△ABC中,a,b,c分别为角A,B,C的对边,且cos2B+cosB+cos(A-C)=1,则


  1. A.
    a,b,c成等差数列
  2. B.
    a,b,c成等比数列
  3. C.
    a,c,b成等差数列
  4. D.
    a,c,b成等比数列
B
分析:把已知的等式变形后,利用诱导公式及二倍角的余弦函数公式化简,再利用和差化积公式变形后,利用正弦定理可得出ac=b2,进而确定出a,b,c成等比数列.
解答:由cos2B+cosB+cos(A-C)=1变形得:cosB+cos(A-C)=1-cos2B,
∵cosB=cos[π-(A+C)]=-cos(A+C),cos2B=1-2sin2B,
∴上式化简得:cos(A-C)-cos(A+C)=2sin2B,
∴-2sinAsin(-C)=2sin2B,即sinAsinC=sin2B,
由正弦定理==得:ac=b2
则a,b,c成等比数列.
故选B
点评:此题考查了正弦定理,诱导公式,二倍角的余弦函数公式,和差化积公式,以及等比数列的性质,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案