精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右顶点、上顶点分别为AB,坐标原点到直线AB的距离为,且.

1)求椭圆C的方程;

2)过椭圆C的左焦点的直线交椭圆于MN两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线的方程.

【答案】1;(2.

【解析】

1)首先求直线方程,表示原点到直线的距离,再根据,联立解求椭圆方程;

2)直线,与椭圆方程联立,表示

再利用中点坐标公式表示点的坐标,根据点在椭圆上,代入椭圆方程求

(1) 设直线AB的方程为

原点到AB的距离为,又

解得

故椭圆的方程为

2)由(1)得椭圆的左焦点

易知直线的斜率不为0,可设直线,设

因为MOPN为平行四边形,

联立

因为点P在椭圆上,有

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)是否存在,使得函数在区间的最小值为且最大值为?若存在,求出的所有值;若不存在,请说明理由.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司决定投人资金进行产品研发以提高产品售价.已知每件产品的制造成本为元,若投人的总的研发成本(万元)与每件产品的销售单价()的关系如下表:

1)求关于的线性回归方程;

2)市场部发现,销售单价()与销量()存在以下关系:.根据(1)中结果预测,当为何值时,可获得最高的利润?

:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知,(CD为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m元/千米.在规划要求下,修建道路总费用的最小值为_____元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,a1=1,前n项和为Sn,数列{bn}为等比数列,b1>1,公比为2,且b2S3=54,b3+S2=16.

(Ⅰ)求数列{an}与{bn}的通项公式;

(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值.由检测结果得到如下频率分布直方图.

分组

频数

频率

8

16

0.16

4

0.04

合计

100

1

1)求图中的值;

2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150/件售出,优质品按200/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是椭圆的左焦点,且椭圆经过点.

)求椭圆的方程;

)若过点的直线交椭圆两点,线段的中点为,过且与垂直的直线与轴和轴分别交于两点,记的面积分别为.若,求直线的方程.

查看答案和解析>>

同步练习册答案