【题目】已知椭圆的右顶点、上顶点分别为A、B,坐标原点到直线AB的距离为,且.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点的直线交椭圆于M、N两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线的方程.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)讨论的单调性;
(2)是否存在,,使得函数在区间的最小值为且最大值为?若存在,求出,的所有值;若不存在,请说明理由.
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司决定投人资金进行产品研发以提高产品售价.已知每件产品的制造成本为元,若投人的总的研发成本(万元)与每件产品的销售单价(元)的关系如下表:
(1)求关于的线性回归方程;
(2)市场部发现,销售单价(元)与销量(件)存在以下关系:,.根据(1)中结果预测,当为何值时,可获得最高的利润?
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知,(CD为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m元/千米.在规划要求下,修建道路总费用的最小值为_____元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等差数列,a1=1,前n项和为Sn,数列{bn}为等比数列,b1>1,公比为2,且b2S3=54,b3+S2=16.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln (x+1)- -x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在等比数列{an}中,=2,,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值.由检测结果得到如下频率分布直方图.
分组 | 频数 | 频率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合计 | 100 | 1 |
(1)求图中的值;
(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间和内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共件,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150元/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知是椭圆的左焦点,且椭圆经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线交椭圆于、两点,线段的中点为,过且与垂直的直线与轴和轴分别交于、两点,记、的面积分别为、.若,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com