精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.

(1)求证:平面PAC平面PBC

(2)AB2AC1PA1,求二面角CPBA的余弦值.

【答案】1)见解析(2

【解析】

(1)AB是圆的直径,得ACBC

PA平面ABCBC平面ABC,得PABC.

PAACAPA平面PACAC平面PAC

所以BC平面PAC.

因为BC平面PBC

所以平面PBC平面PAC.

(2)CCMAP,则CM平面ABC.

如图,以点C为坐标原点,分别以直线CBCACMx轴,y轴,z轴建立空间直角坐标系.

Rt△ABC中,因为AB2AC1,所以BC.

因为PA1,所以A(0,1,0)B(0,0)P(0,1,1).故(0,0)(0,1,1)

设平面BCP的法向量为n1(x1y1z1),则所以

不妨令y11,则n1(0,1,-1).因为(0,0,1)(,-1,0)

设平面ABP的法向量为n2(x2y2z2),则所以

不妨令x21,则n2(10).于是cosn1n2〉=.

由题图可判断二面角为锐角,所以二面角CPBA的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,直线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)若曲线为曲线关于直线的对称曲线,点分别为曲线、曲线上的动点,点坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示不同的直线,表示不同的平面,给出下列个命题:其中命题正确的个数是(

①若,且,则

②若,且,则

③若,则

,且,则.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为:为参数),在以为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线交于两点,点的坐标为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以分组的频率分布直方图如图所示.

根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;

用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布

估计该市居民月平均用电量介于度之间的概率;

利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点..

(1)求证:平面平面

(2),在线段上是否存在一点,使得二面角的余弦值为.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线上点处的切线过点,求函数的单调减区间;

(Ⅱ)若函数上无零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求函数处的切线方程;

(2)若函数存在两个极值点,求的取值范围;

(3)若不等式对任意的实数恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案