精英家教网 > 高中数学 > 题目详情
18.已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点(1,$\frac{\sqrt{3}}{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)设P是椭圆C长轴上的一个动点,过P作斜率为$\frac{1}{2}$的直线l交椭圆C于A、B两点,求证:|PA|2+|PB|2为定值.

分析 (1)利用椭圆长轴长设出椭圆方程,利用点在椭圆上,求出b,即可得到椭圆方程.
(2)设出P,直线l的方程,联立直线与椭圆方程,设出AB坐标,通过韦达定理表示:|PA|2+|PB|2,化简求解即可.

解答 解:(1)因为C的焦点在x轴上且长轴长为4,
故可设椭圆C的方程为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(2>b>0),
因为点(1,$\frac{\sqrt{3}}{2}$)在椭圆C上,所以$\frac{1}{4}$+$\frac{3}{4{b}^{2}}$=1,
解得b2=1,
所以,椭圆C的方程为:$\frac{{x}^{2}}{4}$+y2=1.
(2)证明:设P(m,0)(-2≤m≤2),由已知,直线l的方程是y=$\frac{x-m}{2}$,
由$\left\{\begin{array}{l}{y=\frac{1}{2}x-\frac{1}{2}m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y得,2x2-2mx+m2-4=0,(*)
设A(x1,y1),B(x2,y2),则x1、x2是方程(*)的两个根,
所以有,x1+x2=m,x1x2=$\frac{{m}^{2}-4}{2}$,
所以,|PA|2+|PB|2=(x1-m)2+y12+(x2-m)2+y22
=(x1-m)2+$\frac{1}{4}$(x1-m)2+(x2-m)2+$\frac{1}{4}$(x2-m)2
=$\frac{5}{4}$[(x1-m)2+(x2-m)2]
=$\frac{5}{4}$[x12+x22-2m(x1+x2)+2m2]
=$\frac{5}{4}$[(x1+x22-2m(x1+x2)-2x1x2+2m2]
=$\frac{5}{4}$[m2-2m2-(m2-4)+2m2]=5(定值).
所以,|PA|2+|PB|2为定值.

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,定值问题的化简求解,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.数列{an}中,a1=3,{bn}是等差数列且bn=an+1-an(n∈N*),若b3=-2,b10=12,则a3=(  )
A.0B.-7C.-9D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的是(  )
A.命题“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0”
B.命题“若cosx=cosy,则x=y”的逆否命题是真命题:
C.命题“存在四边相等的四边形不是正方形”是假命题
D.命题”若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2≤3x+10},B={x|a+1≤x≤2a+1}.
(1)若a=3,求(∁RA)∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC的三边分别为a,b,c.若a=2,b=3,c=4,则其最小角的余弦值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.“若a+b+c=3,则a2+b2+c2≥3”的否命题是若a+b+c≠3,则a2+b2+c2<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}$=1表示焦点在x轴上的椭圆,命题q:方程$\frac{x^2}{m}-\frac{y^2}{1-m}$=1表示双曲线,则p是q的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点P(3,2)作曲线C:x2+y2-2x=0的两条切线,切点分别为A,B,则直线AB的方程为(  )
A.2x+2y-3=0B.2x-2y-3=0C.4x-y-3=0D.4x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若以双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的左、右焦点和点(1,2$\sqrt{2}$)为顶点的三角形为直角三角形,则此双曲线的焦距长为(  )
A.10B.8C.2$\sqrt{5}$D.6

查看答案和解析>>

同步练习册答案