精英家教网 > 高中数学 > 题目详情
19.设{an}是公比为正数的等比数列,a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=(2n-1)an求数列{bn}的前n项和Sn

分析 (Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式;
(Ⅱ)利用“错位相减法”、等比数列的求和公式即可得出.

解答 解:(Ⅰ)∵设{an}是公比为正数的等比数列,
∴设其公比为q,q>0
∵a3=a2+4,a1=2
∴2×q2=2×q+4,
解得q=2或q=-1.
∵q>0,
∴q=2,
∴{an}的通项公式为an=2×2n-1=2n
(Ⅱ)bn=(2n-1)an=(2n-1)•2n
①当n=1时,S1=b1=2;
②当n≥2时,
Sn=1×2+3×22+…+(2n-1)•2n
2Sn=1×22+3×23+…+(2n-3)•2n+(2n-1)•2n+1
两式相减,得
-Sn=1×2+2×(22+23+…+2n)-(2n-1)•2n+1
=2+2×$\frac{4×({2}^{n-1}-1)}{2-1}$-(2n-1)•2n+1=(3-2n)•2n+1-6.
∴Sn=6-(3-2n)•2n+1
经验证,当n=1时,也适合Sn=6-(3-2n)•2n+1
故数列{bn}的前n项和Sn=6-(3-2n)•2n+1

点评 本题考查了“错位相减法”、等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.过两点A(m2+2,3-m2),B(3-m-m2,-2m)的直线l的倾斜角为135°,则m的值为(  )
A.-1或-2B.-1C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知logx8=3,则x的值为(  )
A.$\frac{1}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2-$\frac{4}{x}$,其中a为常数
(1)根据a的不同值,判断函数f(x)的奇偶性,并说明理由;
(2)若a∈(-2,-1),判断函数f(x)在($\frac{1}{2}$,1)上的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.执行如图所示的伪代码,则输出的结果为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)求f(x)的最小正周期和单调增区间;
(2)设p:x∈[$\frac{π}{4}$,$\frac{π}{2}$],q:|f(x)-m|<3,若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b∈R+,求证:a3+b3≥a2b+ab2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax3+x.
(Ⅰ)若函数f(x)在x=1处取得极值,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,函数g(x)=f′(x)(x2+px+q) (其中f′(x)为函数f(x)的导数)的图象关于直线x=1对称,求函数g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递增区间.
(3)求当x为何值时,函数取最大值,并求最大值.

查看答案和解析>>

同步练习册答案