精英家教网 > 高中数学 > 题目详情
(本题满分16分) 对一个边长互不相等的凸边形的边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色.问:共有多少种不同的染色方法?

解析:  设不同的染色法有种.易知.       ………………(4分)

    当时,首先,对于边,有3种不同的染法,由于边的颜色与边的颜色不同,所以,对边有2种不同的染法,类似地,

对边,…,边均有2种染法.对于边

用与边不同的2种颜色染色,但是,这样

也包括了它与边颜色相同的情况,而边

颜色相同的不同染色方法数就是凸n-1边

形的不同染色方法数的种数,于是可得

,     ………………(10分)

于是 

 

    综上所述,不同的染色方法数为.  ………………(16分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题满分16分)两个数列{an},{bn},满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(参考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求证:{bn}为等差数列的充要条件是{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数是常数,且),对定义域内任意),恒有成立.

(1)求函数的解析式,并写出函数的定义域;

(2)求的取值范围,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)已知数列的前项和为,且.数列中,

 .(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②

查看答案和解析>>

科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)

已知函数

(1)判断并证明上的单调性;

(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;

(3)若上恒成立 , 求的取值范围.

 

查看答案和解析>>

同步练习册答案