精英家教网 > 高中数学 > 题目详情
5.在数列{an}中,其前其前n项和为Sn,且满足${S_n}={n^2}+n({n∈{N^*}})$,则an=2n.

分析 利用数列递推关系:n=1时,a1=S1;n≥2时,an=Sn-Sn-1,即可得出.

解答 解:∵${S_n}={n^2}+n({n∈{N^*}})$,
∴n=1时,a1=S1=2;n≥2时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,n=1时也成立.
则an=2n.
故答案为:2n.

点评 本题考查了数列递推关系、数列求和公式与通项公式的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知AA1⊥平面ABC,BB1∥CC1∥AA1,$AC=\sqrt{3}$,$BC=\sqrt{2}$,AA1=2BB1=2CC1=2,BC⊥AC.
(1)求证:B1C1⊥平面A1ACC1
(2)求直线AB1与平面A1B1C1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点为F,过点F作直线l交椭圆E于A,B两点,过点F作直线FN⊥AB,且交y轴于点N(O为坐标原点).
(1)若直线l的倾斜角为45°,求△AOB的面积;
(2)当$\overrightarrow{NA}$$•\overrightarrow{NB}$<0时,求点N的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{(\frac{1}{3})^{x}-2,x≤0}\end{array}\right.$,则不等式f(x)≥1的解集为(  )
A.{x|x≤-1}B.{x|x≥3}C.{x|x≤-1或x≥3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1、F2是椭圆的两个焦点,A是椭圆短轴的一个端点,若△A F1F2是正三角形,则这个椭圆的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,将矩形纸片的右下角折起,使得该角的顶点落在矩形的左边上,若$sinθ=\frac{1}{4}$,则折痕l的长度=$\frac{64}{5}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆C:x2+y2-4x-2y+1=0上存在两个不同的点关于直线x+ay-1=0对称,过点A(-4,a)作圆C的切线,切点为B,则|AB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,正三棱柱(底面为正三角形,侧棱垂直底面)的正视图面积a2,则侧视图的面积为(  )
A.a2B.$\frac{{\sqrt{3}}}{2}{a^2}$C.$\sqrt{3}{a^2}$D.$\frac{{\sqrt{3}}}{4}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某市教育局随机调查了300名高中学生周末的学习时间(单位:小时),制成了如图所示的频率分布直方图,其中学习时间的范围是[0,30],样本数据分组为,[0,5),[5,10),[10,15),[15,20),[20,25),[25,30],根据直方图,这300名高中生周末的学习时间是[5,15)小时的人数是(  )
A.15B.27C.135D.165

查看答案和解析>>

同步练习册答案