精英家教网 > 高中数学 > 题目详情

(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

(1)当时,的递增区间是;当时,上单调递增;在上单调递减
(2)(3)存在,证明见解析

解析试题分析:
(Ⅰ)                   ……2分
①当时,恒成立,故的递增区间是;         ……3分
②当时,令,则.
时,;当时,.
上单调递增;在上单调递减; ……6分
(Ⅱ)由上述讨论,当时,为函数的唯一极大值点,
所以的最大值为=.                  ……8分
由题意有,解得.
所以的取值范围为.                                     ……10分
(Ⅲ)当时,.    记,其中.
∵当时,,∴上为增函数,
上为增函数.                                    ……12分
,所以,对任意的,总有.
所以
又因为,所以.
故在区间上不存在使得成立的)个正数.                                ……14分
考点:本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想及有限与无限思想.
点评:对于题目条件较复杂,设问较多的题目审题时,应该细致严谨,将题目条件条目化,一一分析,细心推敲.对于设问较多的题目,一般前面的问题较简单,问题难度阶梯式上升,先由条件将前面的问题正确解答,然后将前面问题的结论作为后面问题解答的条件,注意问题之间的相互联系,使问题化难为易,层层解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数时取得极值.
(I)求的值;
(II)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,曲线在点处的切线方程为
(1)求的值;
(2)如果当,且时,,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数的图象过点,且在点处的切线方程为
(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)求的极值;
(2)若上为单调递增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数=.
(1)求函数在区间上的值域;
(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x-.
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)抛物线经过点
其中,设函数处取到极值.
(1)用表示
(2) 比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.

查看答案和解析>>

同步练习册答案