(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在()个正数…,使得成立?请证明你的结论.
(1)当时,的递增区间是;当时,在上单调递增;在上单调递减
(2)(3)存在,证明见解析
解析试题分析:
(Ⅰ), ……2分
①当时,恒成立,故的递增区间是; ……3分
②当时,令,则.
当时,;当时,.
故在上单调递增;在上单调递减; ……6分
(Ⅱ)由上述讨论,当时,为函数的唯一极大值点,
所以的最大值为=. ……8分
由题意有,解得.
所以的取值范围为. ……10分
(Ⅲ)当时,. 记,其中.
∵当时,,∴在上为增函数,
即在上为增函数. ……12分
又,所以,对任意的,总有.
所以,
又因为,所以.
故在区间上不存在使得成立的()个正数…. ……14分
考点:本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想及有限与无限思想.
点评:对于题目条件较复杂,设问较多的题目审题时,应该细致严谨,将题目条件条目化,一一分析,细心推敲.对于设问较多的题目,一般前面的问题较简单,问题难度阶梯式上升,先由条件将前面的问题正确解答,然后将前面问题的结论作为后面问题解答的条件,注意问题之间的相互联系,使问题化难为易,层层解决.
科目:高中数学 来源: 题型:解答题
(12分)已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,函数.
(1)求的极值;
(2)若在上为单调递增函数,求的取值范围;
(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数=,.
(1)求函数在区间上的值域;
(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ln x-.
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)抛物线经过点、与,
其中,,设函数在和处取到极值.
(1)用表示;
(2) 比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com