精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域为的奇函数,当.

(Ⅰ)求出函数上的解析式;

(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;

(Ⅲ)若关于的方程有三个不同的解,求的取值范围

【答案】(Ⅰ);(Ⅱ)单调增区间为

单调减区间为(Ⅲ) .

【解析】试题分析; (Ⅰ)①由于函数是定义域为的奇函数,则

②当时, ,因为是奇函数,所以可得当 的解析式,从而得到上的解析式
(Ⅱ)根据(Ⅰ)得到的解析式可画出函数的图象,进而得到的单调区间

(Ⅲ)由(1)可得 有极大值1,极小值-1,进而可构造关于 的不等式,解不等式可得答案.

试题分析;(Ⅰ)①由于函数是定义域为的奇函数,则

②当时, ,因为是奇函数,所以

所以.

综上:

(Ⅱ)图象如图所示.(图像给2分)

单调增区间:

单调减区间:

(Ⅲ)∵方程有三个不同的解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

[145.5,149.5)

1

0.02

[149.5,153.5)

4

0.08

[153.5,157.5)

20

0.40

[157.5,161.5)

15

0.30

[161.5,165.5)

8

0.16

[165.5,169.5)

m

n

合 计

M

N

(1)求出表中所表示的数;

(2)画出频率分布直方图;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2-(2a+3)x+6>0(aR).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

(1)求的值;

(2)求函数的最小值;

(3)若函数在区间上单调递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:如图,梯形ABCD中,AD∥BC,∠C= ,以AB为直径的⊙O恰与CD相切于点E,⊙O交BC于F,连结EF.

(1)求证:AD+BC=AB;
(2)求证:EF是AD与AB的等比中项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+log2x+b在区间( ,4)上有零点,则实数b的取值范围是(
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足,其中;

:实数满足.

Ⅰ)若,为真,求实数的取值范围;

Ⅱ)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.

1)根据以上数据完成2×2列联表,并说明是否有95%的把握认为性别与喜欢运动有关;

喜欢运动

不喜欢运动

总计

总计

2)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.

附:K2

P(K2k0)

0.050

0.025

0.010

0.001

k0

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案