精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求函数f(x)的解析式;
(2)记函数f(x)在区间[2a,a+1]上的最大值为g(a),当a≥-4时,求g(a)的最大值.
分析:(1)由题设知可设f(x)=a(x-1)2+1,由f(0)=3,求得a的值,可得f(x)的解析式.
(2)由于a+1>2a,可得a<1,因为函数图象的开口向上,对称轴为直线x=1,分1-2a>a+1-1和1-2a≤a+1-1两种情况,利用二次函数的性质,求得的最大值g(a)的解析式,从而求得g(a)的最大值.
解答:解:(1)由题设知,图象的对称轴为直线x=1,可设f(x)=a(x-1)2+1,…(3分)
由f(0)=3,得a=2,故f(x)=2x2-4x+3.…(5分)
(2)首先,应有a+1>2a,∴a<1,因为图象的开口向上,对称轴为直线x=1,
当1-2a>a+1-1,即a<
1
3
时,所求的最大值g(a)=f(2a)=8a2-8a+3.…(7分)
当1-2a≤a+1-1,即
1
3
≤a<1
时,所求的最大值g(a)=f(a+1)=2a2+1.…(9分)
∴g(a)=
2a2+1 , 
1
3
≤a<1
8a2-8a+3 , a<
1
3
,…(11分)
函数g(a)在[
1
3
,1)
上单调递增,在(-∞,
1
3
)
上单调递减.…(13分)
∴而f(1)=3,f(-4)=163,当a≥-4时,g(a)的最大值为163. …(16分)
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案